toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Reig, M. url  doi
openurl 
  Title The stochastic axiverse Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 09 Issue 9 Pages 207 - 40pp  
  Keywords Cosmology of Theories beyond the SM; Beyond Standard Model; Compactification and String Models  
  Abstract In addition to spectacular signatures such as black hole superradiance and the rotation of CMB polarization, the plenitude of axions appearing in the string axiverse may have potentially dangerous implications. An example is the cosmological overproduction of relic axions and moduli by the misalignment mechanism, more pronounced in regions where the signals mentioned above may be observable, that is for large axion decay constant. In this work, we study the minimal requirements to soften this problem and show that the fundamental requirement is a long period of low-scale inflation. However, in this case, if the inflationary Hubble scale is lower than around O(100) eV, no relic DM axion is produced in the early Universe. Cosmological production of some axions may be activated, via the misalignment mechanism, if their potential minimum changes between inflation and today. As a particular example, we study in detail how the maximal-misalignment mechanism dilutes the effect of dangerous axions and allows the production of axion DM in a controlled way. In this case, the potential of the axion that realises the mechanism shifts by a factor increment theta = pi between the inflationary epoch and today, and the axion starts to oscillate from the top of its potential. We also show that axions with masses m(a) similar to O(1 – 100) H-0 realising the maximal-misalignment mechanism generically behave as dark energy with a decay constant that can take values well below the Planck scale, avoiding problems associated to super-Planckian scales. Finally, we briefly study the basic phenomenological implications of the mechanism and comment on the compatibility of this type of maximally-misaligned quintessence with the swampland criteria.  
  Address [Reig, Mario] Univ Valencia, CSIC, Inst Fis Corpuscular, C Catedratico Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: mario.reig@ifis.uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000702371800004 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4977  
Permanent link to this record
 

 
Author (down) Real, D.; Sanchez Losa, A.; Diaz, A.; Salesa Greus, F.; Calvo, D. doi  openurl
  Title The Neutrino Mediterranean Observatory Laser Beacon: Design and Qualification Type Journal Article
  Year 2023 Publication Applied Sciences-Basel Abbreviated Journal Appl. Sci.-Basel  
  Volume 13 Issue 17 Pages 9935 - 16pp  
  Keywords neutrino telescope; time calibration; laser beacon  
  Abstract This paper encapsulates details of the NEMO laser beacon's design, offering a profound contribution to the field of the time calibration of underwater neutrino telescopes. The mechanical design of the laser beacon, which operates at a depth of 3500 m, is presented, together with the design of the antibiofouling system employed to endure the operational pressure and optimize the operational range, enhancing its functionality and enabling time calibration among multiple towers. A noteworthy innovation central to this development lies in the battery system. This configuration enhances the device's portability, a crucial aspect in underwater operations. The comprehensive design of the laser beacon, encompassing the container housing, the requisite battery system for operation, electronics, and an effective antibiofouling system, is described in this paper. Additionally, this paper presents the findings of the laser beacon's qualification process.  
  Address [Real, Diego; Losa, Agustin Sanchez; Greus, Francisco Salesa; Calvo, David] CSIC Univ Valencia, IFIC Inst Fis Corpuscular, C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: real@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001063704500001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5668  
Permanent link to this record
 

 
Author (down) Real, D.; Calvo, D.; Zornoza, J.D.; Manzaneda, M.; Gozzini, R.; Ricolfe-Viala, C.; Lajara, R.; Albiol, F. doi  openurl
  Title Fast Coincidence Filter for Silicon Photomultiplier Dark Count Rate Rejection Type Journal Article
  Year 2024 Publication Sensors Abbreviated Journal Sensors  
  Volume 24 Issue 7 Pages 2084 - 12pp  
  Keywords time-to-digital converters; neutrino telescopes; silicon photomultipliers; dark noise rate filtering  
  Abstract Silicon Photomultipliers find applications across various fields. One potential Silicon Photomultiplier application domain is neutrino telescopes, where they may enhance the angular resolution. However, the elevated dark count rate associated with Silicon Photomultipliers represents a significant challenge to their widespread utilization. To address this issue, it is proposed to use Silicon Photomultipliers and Photomultiplier Tubes together. The Photomultiplier Tube signals serve as a trigger to mitigate the dark count rate, thereby preventing undue saturation of the available bandwidth. This paper presents an investigation into a fast and resource-efficient method for filtering the Silicon Photomultiplier dark count rate. A low-resource and fast coincident filter has been developed, which removes the Silicon Photomultiplier dark count rate by using as a trigger the Photomultiplier Tube input signals. The architecture of the coincidence filter, together with the first results obtained, which validate the effectiveness of this method, is presented.  
  Address [Real, Diego; Calvo, David; Zornoza, Juan de Dios; Manzaneda, Mario; Gozzini, Rebecca; Albiol, Francisco] CSIC Univ Valencia, IFIC Inst Fis Corpuscular, C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: real@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001201226600001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 6063  
Permanent link to this record
 

 
Author (down) Real, D.; Calvo, D.; Zornoza, J.D.; Manzaneda, M. doi  openurl
  Title White Rabbit Expansion Board: Design, Architecture, and Signal Integrity Simulations Type Journal Article
  Year 2023 Publication Electronics Abbreviated Journal Electronics  
  Volume 12 Issue 16 Pages 3394 - 16pp  
  Keywords subnanosecond synchronization; White Rabbit; IEEE Std 1588-2019; virtual prototyping  
  Abstract The White Rabbit protocol allows synchronization and communication via an optical link in an integrated, modular, and scalable manner. It provides a solution to those applications that have very demanding requirements in terms of synchronization. Field-programmable gate arrays are used to implement the protocol; additionally, special hardware is needed to provide the necessary clock signals used by the dual-mixer time difference for precise phase measurement. In the present work, an expansion board that allows for White Rabbit functionality is presented. The expansion board contains the oscillators required by the White Rabbit protocol, one running at 125 MHz and another at 124.922 MHZ. The architecture of this board includes two oscillator systems for tests and comparison. One is based on VCOs and another on crystal oscillators running at the desired frequencies. In addition, it incorporates a temperature sensor, from where the medium access control address is extracted, an electrically erasable programmable read-only memory, a pulse-per-second output, and a USB UART to access the White Rabbit IP core at the field-programmable gate array. Finally, to ensure the quality of the layout design and guarantee the level of synchronization desired, the results of the power and signal integrity simulations are also presented.  
  Address [Real, Diego; Calvo, David; de Dios Zornoza, Juan; Manzaneda, Mario] Univ Valencia, IFIC Inst Fis Corpuscular, CSIC, C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: real@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001056236300001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5628  
Permanent link to this record
 

 
Author (down) Real, D.; Calvo, D.; Diaz, A.; Salesa Greus, F.; Sanchez Losa, A. doi  openurl
  Title A Narrow Optical Pulse Emitter Based on LED: NOPELED Type Journal Article
  Year 2022 Publication Sensors Abbreviated Journal Sensors  
  Volume 22 Issue 19 Pages 7683 - 15pp  
  Keywords short optical pulse; optical instrumentation  
  Abstract Light sources emitting short pulses are needed in many particle physics experiments using optical sensors as they can replicate the light produced by the particles being detected and are also an important calibration and test element. This work presents NOPELED, a light source based on LEDs emitting short optical pulses with typical rise times of less than 3 ns and Full Width at Half Maximum lower than 7 ns. The emission wavelength depends on the model of LED used. Several LED models have been characterized in the range from 405 to 532 nm, although NOPELED can work with LED emitting wavelengths outside of that region. While the wavelength is fixed for a given LED model, the intensity and the frequency of the optical pulse can be controlled. NOPELED, which also has low cost and simple operation, can be operated remotely, making it appropriate for either different physics experiments needing in-place light sources such as astrophysical neutrino detectors using photo-multipliers or positron emission tomography devices using scintillation counters, or, beyond physics, applications needing short pulses of light such as protein fluorescence or chemodetection of heavy metals.  
  Address [Real, Diego; Calvo, David; Salesa Greus, Francisco; Sanchez Losa, Agustin] Univ Valencia, IFIC Inst Fis Corpuscular, CSIC, C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: real@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000867935300001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5381  
Permanent link to this record
 

 
Author (down) Real, D.; Calvo, D.; Diaz, A.; Alves Garre, S.; Carretero, V.; Sanchez Losa, A.; Salesa Greus, F. doi  openurl
  Title An Ultra-Narrow Time Optical Pulse Emitter Based on a Laser: UNTOPEL Type Journal Article
  Year 2023 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.  
  Volume 70 Issue 10 Pages 2364-2372  
  Keywords Instrumentation electronics; neutrino telescope instrumentation; subnanosecond light source; time calibration instrument  
  Abstract Light sources that emit repetitive subnanosecond pulses are used in neutrino telescopes for time calibration. Optical pulses with an ultra-narrow (subnanosecond) width can replicate the light produced by neutrino interactions, and are an important calibration and test element. By measuring the time-of-flight of the light, it is possible to provide a relative time calibration for all the detector photomultipliers. This work presents the ultra-narrow time optical pulse emitter based on a laser (UNTOPEL), an instrument emitting ultra-short laser optical pulses with a duration of 500 ps, energies per pulse of four microjoules at a wavelength of 532 nm, and a timing precision of 400 ps. The UNTOPEL pulse intensity can be fine-tuned, which is a novelty and a significant advantage in those applications that need to illuminate light detectors located at different distances with the same light intensity. The UNTOPEL pulse intensity can be controlled remotely, allowing for its use in operating conditions where physical access is impossible or difficult. Moreover, it is easy to operate and can be easily controlled through an inter-integrated circuit bus. The UNTOPEL is a sound instrument used when subnanosecond pulses and variable energy emissions are needed.  
  Address [Real, Diego; Calvo, David; Garre, Sergio Alves; Carretero, Victor; Losa, Agustin Sanchez; Greus, FranciscoSalesa] Univ Valencia, IFIC Inst Fis Corpuscular, CSIC, Paterna 46980, Spain, Email: real@ific.uv.es  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9499 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001098078200010 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5795  
Permanent link to this record
 

 
Author (down) Real, D.; Calvo, D. doi  openurl
  Title Production requirements and functional tests of the KM3NeT Digital Optical Module Power Board Type Journal Article
  Year 2022 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 1042 Issue Pages 167426 - 3pp  
  Keywords Power supply; Electronics reliability; Functional tests  
  Abstract The KM3NeT research facility is being built in the Mediterranean Sea. It consists of matrices of optical detectors, the so-called Digital Optical Module. Each of this elementary detector holds a set of 31 small-area photomultipliers, which detect the Cherenkov light generated by secondary particles produced in neutrino interactions. It includes also the acquisition electronics and the power board which supplies both, the acquisition electronics and the photomultipliers. The production of electronics boards needs to have a high quality and reliability level as it is going to be deployed for more than ten years without any maintenance possible. This work presents the requirements and the qualification tests being implemented in order to increase the reliability of the Power Board of the acquisition electronics of KM3NeT during the mass production. At the moment, more than one thousand board have been produced. Results on the production of the boards, including the production yield is presented. From the already produced boards, more than 350 have been already deployed and are operative in the detectors.  
  Address [Real, D.; Calvo, D.; KM3NeT Collaboration] Univ Valencia, IFIC Inst Fis Corpuscular, CSIC, C Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: real@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000873950500001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5403  
Permanent link to this record
 

 
Author (down) Real, D.; Calvo, D. doi  openurl
  Title Silicon Photomultipliers for Neutrino Telescopes Type Journal Article
  Year 2023 Publication Universe Abbreviated Journal Universe  
  Volume 9 Issue 7 Pages 326 - 14pp  
  Keywords silicon photomultipliers; neutrino telescopes; time to digital converters; electronics acquisition  
  Abstract Neutrino astronomy has opened a new window to the extreme Universe, entering into a fruitful era built upon the success of neutrino telescopes, which have already given a new step forward in this novel and growing field by the first observation of steady point-like sources already achieved by IceCube. Neutrino telescopes equipped with Silicon PhotoMultipliers (SiPMs) will significantly increase in number, because of their excellent time resolution and the angular resolution, and will be in better condition to detect more steady sources as well as the unexpected. The use of SiPMs represents a challenge to the acquisition electronics because of the fast signals as well as the high levels of dark noise produced by SiPMs. The acquisition electronics need to include a noise rejection scheme by implementing a coincidence filter between channels. This work discusses the advantages and disadvantages of using SiPMs for the next generation of neutrino telescopes, focusing on the possible developments that could help for their adoption in the near future.  
  Address [Real, Diego; Calvo, David] Univ Valencia, Inst Fis Corpuscular, CSIC, IFIC, C Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: real@ific.uv.es  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001038900800001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5593  
Permanent link to this record
 

 
Author (down) Ramirez-Uribe, S.; Renteria-Olivo, A.E.; Rodrigo, G.; Sborlini, G.F.R.; Vale Silva, L. url  doi
openurl 
  Title Quantum algorithm for Feynman loop integrals Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue 5 Pages 100 - 32pp  
  Keywords Duality in Gauge Field Theories; Perturbative QCD; Scattering Amplitudes  
  Abstract We present a novel benchmark application of a quantum algorithm to Feynman loop integrals. The two on-shell states of a Feynman propagator are identified with the two states of a qubit and a quantum algorithm is used to unfold the causal singular configurations of multiloop Feynman diagrams. To identify such configurations, we exploit Grover's algorithm for querying multiple solutions over unstructured datasets, which presents a quadratic speed-up over classical algorithms when the number of solutions is much smaller than the number of possible configurations. A suitable modification is introduced to deal with topologies in which the number of causal states to be identified is nearly half of the total number of states. The output of the quantum algorithm in IBM Quantum and QUTE Testbed simulators is used to bootstrap the causal representation in the loop-tree duality of representative multiloop topologies. The algorithm may also find application and interest in graph theory to solve problems involving directed acyclic graphs.  
  Address [Ramirez-Uribe, Selomit; Renteria-Olivo, Andres E.; Rodrigo, German; Sborlini, German F. R.; Vale Silva, Luiz] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient, E-46980 Valencia, Spain, Email: norma.selomit.ramirez@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000796990400007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5230  
Permanent link to this record
 

 
Author (down) Ramirez-Uribe, S.; Hernandez-Pinto, R.J.; Rodrigo, G.; Sborlini, G.F.R.; Torres Bobadilla, W.J. url  doi
openurl 
  Title Universal opening of four-loop scattering amplitudes to trees Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 04 Issue 4 Pages 129 - 22pp  
  Keywords Duality in Gauge Field Theories; Perturbative QCD; Scattering Amplitudes  
  Abstract The perturbative approach to quantum field theories has made it possible to obtain incredibly accurate theoretical predictions in high-energy physics. Although various techniques have been developed to boost the efficiency of these calculations, some ingredients remain specially challenging. This is the case of multiloop scattering amplitudes that constitute a hard bottleneck to solve. In this paper, we delve into the application of a disruptive technique based on the loop-tree duality theorem, which is aimed at an efficient computation of such objects by opening the loops to nondisjoint trees. We study the multiloop topologies that first appear at four loops and assemble them in a clever and general expression, the (NMLT)-M-4 universal topology. This general expression enables to open any scattering amplitude of up to four loops, and also describes a subset of higher order configurations to all orders. These results confirm the conjecture of a factorized opening in terms of simpler known subtopologies, which also determines how the causal structure of the entire loop amplitude is characterized by the causal structure of its subtopologies. In addition, we confirm that the loop-tree duality representation of the (NMLT)-M-4 universal topology is manifestly free of noncausal thresholds, thus pointing towards a remarkably more stable numerical implementation of multiloop scattering amplitudes.  
  Address [Ramirez-Uribe, Selomit; Rodrigo, German; Sborlini, German F. R.; Bobadilla, William J. Torres] Univ Valencia, Inst Fis Corpuscular, CSIC, Parc Cient, E-46980 Valencia, Spain, Email: norma.selomit.ramirez@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000641467800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4787  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva