DUNE Collaboration(Abi, B. et al), Antonova, M., Barenboim, G., Cervera-Villanueva, A., De Romeri, V., Garcia-Peris, M. A., et al. (2020). Long-baseline neutrino oscillation physics potential of the DUNE experiment. Eur. Phys. J. C, 80(10), 978–34pp.
Abstract: The sensitivity of the Deep Underground Neutrino Experiment (DUNE) to neutrino oscillation is determined, based on a full simulation, reconstruction, and event selection of the far detector and a full simulation and parameterized analysis of the near detector. Detailed uncertainties due to the flux prediction, neutrino interaction model, and detector effects are included. DUNE will resolve the neutrino mass ordering to a precision of 5 sigma, for all delta CP values, after 2 years of running with the nominal detector design and beam configuration. It has the potential to observe charge-parity violation in the neutrino sector to a precision of 3 sigma (5 sigma) after an exposure of 5 (10) years, for 50% of all delta CP values. It will also make precise measurements of other parameters governing long-baseline neutrino oscillation, and after an exposure of 15 years will achieve a similar sensitivity to sin22 theta 13 to current reactor experiments.
|
DUNE Collaboration(Abi, B. et al), Antonova, M., Barenboim, G., Cervera-Villanueva, A., De Romeri, V., Fernandez Menendez, P., et al. (2021). Prospects for beyond the Standard Model physics searches at the Deep Underground Neutrino Experiment DUNE Collaboration. Eur. Phys. J. C, 81(4), 322–51pp.
Abstract: The Deep Underground Neutrino Experiment (DUNE) will be a powerful tool for a variety of physics topics. The high-intensity proton beams provide a large neutrino flux, sampled by a near detector system consisting of a combination of capable precision detectors, and by the massive far detector system located deep underground. This configuration sets up DUNE as a machine for discovery, as it enables opportunities not only to perform precision neutrino measurements that may uncover deviations from the present three-flavor mixing paradigm, but also to discover new particles and unveil new interactions and symmetries beyond those predicted in the Standard Model (SM). Of the many potential beyond the Standard Model (BSM) topics DUNE will probe, this paper presents a selection of studies quantifying DUNE's sensitivities to sterile neutrino mixing, heavy neutral leptons, non-standard interactions, CPT symmetry violation, Lorentz invariance violation, neutrino trident production, dark matter from both beam induced and cosmogenic sources, baryon number violation, and other new physics topics that complement those at high-energy colliders and significantly extend the present reach.
|
DUNE Collaboration(Abi, B. et al), Antonova, M., Barenboim, G., Cervera-Villanueva, A., De Romeri, V., Fernandez Menendez, P., et al. (2021). Supernova neutrino burst detection with the Deep Underground Neutrino Experiment. Eur. Phys. J. C, 81(5), 423–26pp.
Abstract: The Deep Underground Neutrino Experiment (DUNE), a 40-kton underground liquid argon time projection chamber experiment, will be sensitive to the electron-neutrino flavor component of the burst of neutrinos expected from the next Galactic core-collapse supernova. Such an observation will bring unique insight into the astrophysics of core collapse as well as into the properties of neutrinos. The general capabilities of DUNE for neutrino detection in the relevant few- to few-tens-of-MeV neutrino energy range will be described. As an example, DUNE's ability to constrain the nu(e) spectral parameters of the neutrino burst will be considered.
|
Duan, M. Y., Song, J., Liang, W. H., & Oset, E. (2024). On the search for the two poles of the Ξ(1820)in the ψ(3686)→Ξ+K0Σ∗-(π-Λ) decay. Eur. Phys. J. C, 84(9), 947–5pp.
Abstract: We propose the reaction psi(3686)->Xi<overline>+K-<overline>0 Sigma(& lowast;-), with the Sigma(& lowast;-) decaying to pi(-)Lambda in order to show evidence for the existence of two Xi(1820) states, one around 1824 MeV and narrow, and another one around 1875 MeV and wide. The phase space for K<overline>0 Sigma(& lowast;-) production reduces the effect of the lower mass resonance, magnifying the effect of the higher mass resonance that shows clearly over the phase space. The estimated rate of the production is bigger than the one of the psi(3686)->Xi<overline>+K-Lambda reaction, where a clear peak for Xi(1820) was observed by the BESIII collaboration, what makes the Beijing facility ideal to carry out the reaction proposed.
|
Du, M. L., Guo, F. K., Meissner, U. G., & Yao, D. L. (2017). Study of open-charm 0(+) states in unitarized chiral effective theory with one-loop potentials. Eur. Phys. J. C, 77(11), 728–16pp.
Abstract: Chiral potentials are derived for the interactions between Goldstone bosons and pseudo-scalar charmed mesons up to next-to-next-to-leading order in a covariant chiral effective field theory with explicit vector charmed-meson degrees of freedom. Using the extended-on-mass-shell scheme, we demonstrate that the ultraviolet divergences and the so-called power counting breaking terms can be properly absorbed by the low-energy constants of the chiral Lagrangians. We calculate the scattering lengths by unitarizing the one-loop potentials and fit them to the data extracted from lattice QCD. The obtained results are compared to the ones without an explicit contribution of vector charmed mesons given previously. It is found that the difference is negligible for 5-wave scattering in the threshold region. This validates the use of D-*-less one-loop potentials in the study of the pertinent scattering lengths. We search for dynamically generated open-charm states with J(P) = 0(+) as poles of the 5-matrix on various Riemann sheets. The trajectories of those poles for varying pion masses are presented as well.
|