|   | 
Details
   web
Records
Author (down) Davesne, D.; Navarro, J.; Meyer, J.; Bennaceur, K.; Pastore, A.
Title Two-body contributions to the effective mass in nuclear effective interactions Type Journal Article
Year 2018 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 97 Issue 4 Pages 044304 - 7pp
Keywords
Abstract Starting from general expressions of well-chosen symmetric nuclear matter quantities derived for both zero-and finite-range effective theories, we derive some universal relations between them. We first showthat, independently of the range, the two-body contribution is enough to describe correctly the saturation mechanism but gives an effective mass value around m(*)/m similar or equal to 0.4 when the other properties of the saturation point are set near their generally accepted values. Then, we show that a more elaborated interaction (for instance, an effective two-body density-dependent term on top of the pure two-body term) is needed to reach the accepted value m(*)/m similar or equal to 0.7-0.8.
Address [Davesne, D.; Meyer, J.; Bennaceur, K.] Univ Claude Bernard Lyon 1, Univ Lyon, CNRS, IPNL,UMR 5822, 4 Rue E Fermi, F-69622 Villeurbanne, France, Email: davesne@ipnl.in2p3.fr;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:000429456600002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3554
Permanent link to this record
 

 
Author (down) Dai, L.Y.; Kang, X.W.; Meissner, U.G.; Song, X.Y.; Yao, D.L.
Title Amplitude analysis of the anomalous decay eta ' -> pi(+) pi(-) gamma Type Journal Article
Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 97 Issue 3 Pages 036012 - 12pp
Keywords
Abstract In this paper we perform an amplitude analysis of eta ' -> pi(+)pi(-)gamma and confront it with the latest BESIII data. Based on the final-state interaction theorem, we represent the amplitude in terms of an Omnes function multiplied by a form factor that corresponds to the contributions from left-hand cuts and right-hand cuts in the inelastic channels. We also take into account the isospin violation effect induced by rho-omega mixing. Our results show that the anomaly contribution is mandatory in order to explain the data. Its contribution to the decay width of Gamma(eta ' -> pi pi gamma) is larger than that induced by isospin violation. Finally we extract the pole positions of the rho and omega as well as their corresponding residues.
Address [Dai, Ling-Yun] Hunan Univ, Sch Phys & Elect, Changsha 410082, Hunan, Peoples R China, Email: l.dai@fz-juelich.de;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000424904000003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3489
Permanent link to this record
 

 
Author (down) Dai, L.R.; Zhang, X.; Oset, E.
Title Semileptonic decays of B-(*), D-(*) into vl and pseudoscalar or vector mesons Type Journal Article
Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 98 Issue 3 Pages 036004 - 16pp
Keywords
Abstract We perform a study of the B-(*), D-(*) scmileptonic decays, using a differcnt mcthod than in conventional approaches, where the matrix elements of the weak operators are evaluated and a detailed spin-angular momentum algebra is performed to obtain very simple expressions at the end for the different decay modes. Using only one experimental decay rate in the B or D sectors, the rates for the rest of decay modes are predicted and thcy arc in good agrcement with experiment. Somc discrepancies arc observed in the tau dccay mode for which we find an explanation. We perform evaluations for B and D' decay rates that can be used in future measurements, now possible in the LHCb Collaboration.
Address [Dai, L. R.] Liaoning Normal Univ, Dept Phys, Dalian 116029, Peoples R China, Email: dailr@lnnu.edu.cn;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000440824200007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3688
Permanent link to this record
 

 
Author (down) Dai, L.R.; Pavao, R.; Sakai, S.; Oset, E.
Title Anomalous enhancement of the isospin-violating Lambda(1405) production by a triangle singularity in Lambda(c) ->pi(+)pi(0)pi(0)Sigma(0) Type Journal Article
Year 2018 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 97 Issue 11 Pages 116004 - 10pp
Keywords
Abstract The decay of Lambda(+)(c) into pi(+)pi(0) Lambda(1405) with the Lambda(1405) decay into pi(0)Sigma(0) through a triangle diagram is studied. This process is initiated by Lambda(+)(c) -> pi(+) (K) over bar N-*, and then the (K) over bar (*) decays into (K) over bar (pi) and (K) over bar N produce the Lambda(1405) through a triangle loop containing (K) over bar N-* (K) over bar which develops a singularity around 1890 MeV. This process is prohibited by the isospin symmetry, but the decay into this channel is enhanced by the contribution of the triangle diagram, which is sensitive to the mass of the internal particles. We find a narrow peak in the pi(0)Sigma(0) invariant mass distribution, which originates from the (K) over bar amplitude, but is tied to the mass differences between the charged and neutral (K) over bar or N states. The observation of the unavoidable peak of the triangle singularity in the isospin- violating Lambda(1405) production would provide further support for the hadronic molecular picture of the Lambda(1405) and further information on the (K) over bar N interaction.
Address [Dai, L. R.] Liaoning Normal Univ, Dept Phys, Dalian 116029, Peoples R China, Email: dailr@lnnu.edu.cn;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000434211200013 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3602
Permanent link to this record
 

 
Author (down) Dai, L.R.; Oset, E.
Title Helicity amplitudes in B -> D*(nu)over-barl decay Type Journal Article
Year 2018 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 78 Issue 11 Pages 951 - 11pp
Keywords
Abstract We use a recent formalism of the weak hadronic reactions that maps the transition matrix elements at the quark level into hadronic matrix elements, evaluated with an elaborate angular momentum algebra that allows finally to write the weak matrix elements in terms of easy analytical formulas. In particular they appear explicitly for the different spin third components of the vector mesons involved. We extend the formalism to a general case, with the operator parameter, which suggest to use this magnitude to test different models beyond the standard model. We show that our formalism implies the heavy quark limit and compare our results with calculations that include higher order corrections in heavy quark effective theory. We find very similar results for both approaches in normalized distributions, which are practically identical at the end point of M-inv((nu l)) = m(B) – m(D)*
Address [Dai, L. R.] Liaoning Normal Univ, Dept Phys, Dalian 116029, Peoples R China, Email: dailr@lnnu.edu.cn;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000451192100005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3818
Permanent link to this record