toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Navarro-Salas, J. url  doi
openurl 
  Title Black holes, conformal symmetry, and fundamental fields Type Journal Article
  Year 2024 Publication Classical and Quantum Gravity Abbreviated Journal Class. Quantum Gravity  
  Volume 41 Issue 8 Pages 085003 - 14pp  
  Keywords black holes; horizons; singularities; conformal symmetry; quantum fields; Standard Model  
  Abstract Cosmic censorship protects the outside world from black hole singularities and paves the way for assigning entropy to gravity at the event horizons. We point out a tension between cosmic censorship and the quantum backreacted geometry of Schwarzschild black holes, induced by vacuum polarization and driven by the conformal anomaly. A similar tension appears for the Weyl curvature hypothesis at the Big Bang singularity. We argue that the requirement of exact conformal symmetry resolves both conflicts and has major implications for constraining the set of fundamental constituents of the Standard Model.  
  Address [Navarro-Salas, Jose] Univ Valencia, Dept Fis Teor, IFIC, CSIC, E-46100 Burjassot, Valencia, Spain, Email: jnavarro@ific.uv.es  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0264-9381 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001187435100001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 6029  
Permanent link to this record
 

 
Author (down) Nacher, E.; Briz, J.A.; Nerio, A.N.; Perea, A.; Tavora, V.G.; Tengblad, O.; Ciemala, M.; Cieplicka-Orynczak, N.; Maj, A.; Mazurek, K.; Olko, P.; Zieblinski, M.; Borge, M.J.G. url  doi
openurl 
  Title Characterization of a novel proton-CT scanner based on Silicon and LaBr3(Ce) detectors Type Journal Article
  Year 2024 Publication European Physical Journal Plus Abbreviated Journal Eur. Phys. J. Plus  
  Volume 139 Issue 5 Pages 404 - 9pp  
  Keywords  
  Abstract Treatment planning systems at proton-therapy centres entirely use X-ray computed tomography (CT) as primary imaging technique to infer the proton treatment doses to tumour and healthy tissues. However, proton stopping powers in the body, as derived from X-ray images, suffer from important proton-range uncertainties. In order to reduce this uncertainty in range, one could use proton-CT images instead. The main goal of this work is to test the capabilities of a newly-developed proton-CT scanner, based on the use of a set of tracking detectors and a high energy resolution scintillator for the residual energy of the protons. Different custom-made phantoms were positioned at the field of view of the scanner and were irradiated with protons at the CCB proton-therapy center in Krakow. We measured with the phantoms at different angles and produced sinograms that were used to obtain reconstructed images by Filtered Back-Projection. The obtained images were used to determine the capabilities of our scanner in terms of spatial resolution and proton Relative Stopping Power (RSP) mapping and validate its use as proton-CT scanner. The results show that the scanner can produce medium-high quality images, with spatial resolution better than 2 mm in radiography, below 3 mm in tomography and resolving power in the RSP comparable to other state-of-the-art pCT scanners.  
  Address [Nacher, E.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia 46980, Spain, Email: enrique.nacher@csic.es  
  Corporate Author Thesis  
  Publisher Springer Heidelberg Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2190-5444 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001218502700005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6123  
Permanent link to this record
 

 
Author (down) NA64 Collaboration (Andreev, Y.M. et al); Molina Bueno, L.; Tuzi, M. url  doi
openurl 
  Title Probing light dark matter with positron beams at NA64 Type Journal Article
  Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 109 Issue 3 Pages L031103 - 6pp  
  Keywords  
  Abstract We present the results of a missing-energy search for light dark matter which has a new interaction with ordinary matter transmitted by a vector boson, called dark photon A'. For the first time, this search is performed with a positron beam by using the significantly enhanced production of A' in the resonant annihilation of positrons with atomic electrons of the target nuclei, followed by the invisible decay of A' into dark matter. No events were found in the signal region with (10.1 +/- 0.1) x 109 positrons on target with 100 GeV energy. This allowed us to set new exclusion limits that, relative to the collected statistics, prove the power of this experimental technique. This measurement is a crucial first step toward a future exploration program with positron beams, whose estimated sensitivity is here presented.  
  Address [Andreev, Yu. M.; Dermenev, A. V.; Donskov, S. V.; Dusaev, R. R.; Enik, T.; Frolov, V. N.; Kachanov, V. A.; Karneyeu, A. E.; Kirpichnikov, D. V.; Kirsanov, M. M.; Kolosov, V. N.; Gertsenberger, S. V.; Kasianova, E. A.; Kramarenko, V. A.; Kravchuk, L. V.; Krasnikov, N. V.; Lysan, V.; Matveev, V. A.; Samoylenko, V. D.; Shchukin, D.; Tikhomirov, V. O.; Tlisova, I.; Toropin, A. N.; Volkov, P. V.; Volkov, V. Yu.; Voronchikhin, I. V.; Zhevlakov, A. S.] CERN, Meyrin, Switzerland, Email: pietro.bisio@ge.infn.it  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001180160500008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6009  
Permanent link to this record
 

 
Author (down) Mostajeran, M.; Sorolla, E.; Rakova, E.; Gimeno, B. doi  openurl
  Title Space charge and two-sheet model in multipactor Type Journal Article
  Year 2024 Publication European Physical Journal Plus Abbreviated Journal Eur. Phys. J. Plus  
  Volume 139 Issue 3 Pages 256 - 13pp  
  Keywords  
  Abstract The electron cloud populated by a multipactor within two emissive parallel plates was modeled by two thin sheets of charge, and for the first time the equations of the particle motion for this two-sheet system were derived taking into account space charge effects. The electron population growth in multipacting process was then simulated with the code developed on the base of these equations. It was found that the mutual repulsion between the sheets, i.e., space charge effects, results in the increasing of charge in one of the sheets and the loss of charge in the other due to the different growth rates. This process eventually comes to the saturation of one sheet and the dissappearence of the other.  
  Address [Mostajeran, M.] Yazd Univ, Fac Phys, POB 89195-741, Yazd, Iran, Email: mostajeran@yazd.ac.ir;  
  Corporate Author Thesis  
  Publisher Springer Heidelberg Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2190-5444 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001184318100005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6014  
Permanent link to this record
 

 
Author (down) Montesinos, V.; Albaladejo, M.; Nieves, J.; Tolos, L. url  doi
openurl 
  Title Charge-conjugation asymmetry and molecular content: The Ds0*(2317)± in matter Type Journal Article
  Year 2024 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 853 Issue Pages 138656 - 10pp  
  Keywords  
  Abstract We analyze the modifications that a dense nuclear medium induces in the D-s0*(2317)(+/-) and D-s1(2460)(+/-). In the vacuum, we consider them as isoscalar D-(*K-) and (D) over bar (()*())(K) over bar S-wave bound states, which are dynamically generated from effective interactions that lead to different Weinberg compositeness scenarios. Matter effects are incorporated through the two-meson loop functions, taking into account the self energies that the D-(*()), (D) over bar (()*()), K, and (K) over bar develop when embedded in a nuclear medium. Although particle-antiparticle [D-s0,s1(()*())(2317,2460)(+) versus D-s0,s1(()*())(2317,2460)(-)] lineshapes are the same in vacuum, we find extremely different density patterns in matter. This charge-conjugation asymmetry mainly stems from the very different kaon and antikaon interaction with the nucleons of the dense medium. We show that the in-medium lineshapes found for these resonances strongly depend on their D-(*()), K/(D) over bar (()*()), K molecular content, and discuss how this novel feature can be used to better determine/constrain the inner structure of these exotic states.  
  Address [Montesinos, V.; Albaladejo, M.; Nieves, J.] UV, Inst Fis Corpuscular, Inst Invest Paterna, Ctr Mixto,CSIC, C Catedrat Jose Beltran 2, E-46980 Valencia, Spain, Email: Victor.Montesinos@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001218202500001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 6137  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva