|   | 
Details
   web
Records
Author (up) Garcilazo, H.; Valcarce, A.; Vijande, J.
Title Xi(-)t quasibound state instead of Lambda Lambda nn bound state Type Journal Article
Year 2020 Publication Chinese Physics C Abbreviated Journal Chin. Phys. C
Volume 44 Issue 2 Pages 024102 - 7pp
Keywords baryon-baryon interactions; few-body systems; Faddeev equations
Abstract The coupled Lambda Lambda nn – Xi-pnn system was studied to investigate whether the inclusion of channel coupling is able to bind the Lambda Lambda nn system. We use a separable potential three-body model of the coupled Lambda Lambda nn – Xi-pnn system and a variational four-body calculation with realistic interactions. Our results exclude the possibility of a bound state by a large margin. Instead, we found a Xi(-)t quasibound state above the Lambda Lambda nn threshold.
Address [Garcilazo, H.] Inst Politecn Nacl, Escuela Super Fis & Matemat, Edificio 9, Mexico City 07738, DF, Mexico, Email: humberto@esfm.ipn.mx;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1674-1137 ISBN Medium
Area Expedition Conference
Notes WOS:000509960900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4267
Permanent link to this record
 

 
Author (up) Garcilazo, H.; Valcarce, A.; Vijande, J.
Title Neutral baryonic systems with strangeness Type Journal Article
Year 2020 Publication International Journal of Modern Physics E Abbreviated Journal Int. J. Mod. Phys. E
Volume 29 Issue 1 Pages 1930009 - 22pp
Keywords Few-body systems; baryon-baryon interaction; hypernuclei
Abstract We review the status as regards to the existence of three- and four-body bound states made of neutrons and Lambda hyperons. For interesting cases, the coupling to neutral baryonic systems made of charged particles of different strangeness has been addressed. There are strong arguments showing that the Lambda nn system has no bound states. Lambda Lambda nn strong stable states are not favored by our current knowledge of the strangeness -1 and -2 baryon-baryon interactions. However, a possible Xi(-) t quasibound state decaying to Lambda Lambda nn might exist in nature. Similarly, there is a broad agreement about the nonexistence of Lambda Lambda n bound states. However, the coupling to Xi NN states opens the door to a resonance above the Lambda Lambda n threshold.
Address [Garcilazo, H.] Inst Politecn Nacl, Escuela Super Fis & Matemat, Edificio 9, Mexico City 07738, DF, Mexico, Email: humberto@esfm.ipn.mx;
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0218-3013 ISBN Medium
Area Expedition Conference
Notes WOS:000527883500003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4381
Permanent link to this record
 

 
Author (up) Gimenez-Alventosa, V.; Antunes, P.C.G.; Vijande, J.; Ballester, F.; Perez-Calatayud, J.; Andreo, P.
Title Collision-kerma conversion between dose-to-tissue and dose-to-water by photon energy-fluence corrections in low-energy brachytherapy Type Journal Article
Year 2017 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.
Volume 62 Issue 1 Pages 146-164
Keywords Monte Carlo; dosimetry; low-energy seed; collision-kerma; mass energy-absorption coefficients; energy-fluence correction factor
Abstract The AAPM TG-43 brachytherapy dosimetry formalism, introduced in 1995, has become a standard for brachytherapy dosimetry worldwide; it implicitly assumes that charged-particle equilibrium (CPE) exists for the determination of absorbed dose to water at different locations, except in the vicinity of the source capsule. Subsequent dosimetry developments, based on Monte Carlo calculations or analytical solutions of transport equations, do not rely on the CPE assumption and determine directly the dose to different tissues. At the time of relating dose to tissue and dose to water, or vice versa, it is usually assumed that the photon fluence in water and in tissues are practically identical, so that the absorbed dose in the two media can be related by their ratio of mass energy-absorption coefficients. In this work, an efficient way to correlate absorbed dose to water and absorbed dose to tissue in brachytherapy calculations at clinically relevant distances for low-energy photon emitting seeds is proposed. A correction is introduced that is based on the ratio of the water-to-tissue photon energy-fluences. State-of-the art Monte Carlo calculations are used to score photon fluence differential in energy in water and in various human tissues (muscle, adipose and bone), which in all cases include a realistic modelling of low-energy brachytherapy sources in order to benchmark the formalism proposed. The energy-fluence based corrections given in this work are able to correlate absorbed dose to tissue and absorbed dose to water with an accuracy better than 0.5% in the most critical cases (e.g. bone tissue).
Address [Gimenez-Alventosa, Vicent; Antunes, Paula C. G.; Vijande, Javier; Ballester, Facundo] Univ Valencia, Dept Atom Mol & Nucl Phys, E-46100 Burjassot, Spain, Email: vijande@uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9155 ISBN Medium
Area Expedition Conference
Notes WOS:000391567700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2923
Permanent link to this record
 

 
Author (up) Gimenez-Alventosa, V.; Ballester, F.; Vijande, J.
Title VoxelMages: a general-purpose graphical interface for designing geometries and processing DICOM images for PENELOPE Type Journal Article
Year 2016 Publication Applied Radiation And Isotopes Abbreviated Journal Appl. Radiat. Isot.
Volume 118 Issue Pages 251-257
Keywords 87.53.Bn; 87.53.Jw; 87.55.Qr; 87.55.km; 87.55.K
Abstract The design and construction of geometries for Monte Carlo calculations is an error-prone, time-consuming, and complex step in simulations describing particle interactions and transport in the field of medical physics. The software VoxelMages has been developed to help the user in this task. It allows to design complex geometries and to process DICOM image files for simulations with the general-purpose Monte Carlo code PENELOPE in an easy and straightforward way. VoxelMages also allows to import DICOM-RT structure contour information as delivered by a treatment planning system. Its main characteristics, usage and performance benchmarking are described in detail.
Address [Gimenez-Alventosa, V.; Ballester, F.; Vijande, J.] Univ Valencia, Dept Fis Atom Mol & Nucl, E-46100 Valencia, Spain
Corporate Author Thesis
Publisher Pergamon-Elsevier Science Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0969-8043 ISBN Medium
Area Expedition Conference
Notes WOS:000390736100039 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2904
Permanent link to this record
 

 
Author (up) Gimenez-Alventosa, V.; Gimenez, V.; Ballester, F.; Vijande, J.; Andreo, P.
Title Correction factors for ionization chamber measurements with the 'Valencia' and 'large field Valencia' brachytherapy applicators Type Journal Article
Year 2018 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.
Volume 63 Issue 12 Pages 125004 - 10pp
Keywords skin applicator; Valencia applicator; large field Valencia applicator; HDR brachytherap; brachytherapy dosimetry; Monte Carlo
Abstract Treatment of small skin lesions using HDR brachytherapy applicators is a widely used technique. The shielded applicators currently available in clinical practice are based on a tungsten-alloy cup that collimates the source-emitted radiation into a small region, hence protecting nearby tissues. The goal of this manuscript is to evaluate the correction factors required for dose measurements with a plane-parallel ionization chamber typically used in clinical brachytherapy for the 'Valencia' and 'large field Valencia' shielded applicators. Monte Carlo simulations have been performed using the PENELOPE-2014 system to determine the absorbed dose deposited in a water phantom and in the chamber active volume with a Type A uncertainty of the order of 0.1%. The average energies of the photon spectra arriving at the surface of the water phantom differ by approximately 10%, being 384 keV for the 'Valencia' and 343 keV for the 'large field Valencia'. The ionization chamber correction factors have been obtained for both applicators using three methods, their values depending on the applicator being considered. Using a depth-independent global chamber perturbation correction factor and no shift of the effective point of measurement yields depth-dose differences of up to 1% for the 'Valencia' applicator. Calculations using a depth-dependent global perturbation factor, or a shift of the effective point of measurement combined with a constant partial perturbation factor, result in differences of about 0.1% for both applicators. The results emphasize the relevance of carrying out detailed Monte Carlo studies for each shielded brachytherapy applicator and ionization chamber.
Address [Gimenez-Alventosa, V.] Univ Politecn Valencia, CSIC, Ctr Mixto, Inst Instrumentac Imagen Mol I3M, E-46022 Valencia, Spain, Email: Javier.vijande@uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9155 ISBN Medium
Area Expedition Conference
Notes WOS:000434682500004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3609
Permanent link to this record