|   | 
Details
   web
Records
Author (down) Boubekeur, L.; Giusarma, E.; Mena, O.; Ramirez, H.
Title Current status of modified gravity Type Journal Article
Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 90 Issue 10 Pages 103512 - 10pp
Keywords
Abstract We revisit the cosmological viability of the Hu-Sawicki modified gravity scenario. The impact of such a modification on the different cosmological observables, including gravitational waves, is carefully described. The most recent cosmological data, as well as constraints on the relationship between the clustering parameter sigma(8) and the current matter mass-energy density Omega(m) from cluster number counts and weak lensing tomography, are considered in our numerical calculations. The strongest bound we find is vertical bar f(R0)vertical bar < 3.7 x 10(-6) at 95% C.L. Forthcoming cluster surveys covering 10 000 deg(2) in the sky, with galaxy surface densities of O(10) arcmin(-2) could improve the precision in the sigma(8)-Omega(m) relationship, tightening the above constraint.
Address [Boubekeur, Lotfi; Mena, Olga; Ramirez, Hector] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, E-46071 Valencia, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000345534500005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2017
Permanent link to this record
 

 
Author (down) Boubekeur, L.; Giusarma, E.; Mena, O.; Ramirez, H.
Title Phenomenological approaches of inflation and their equivalence Type Journal Article
Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 91 Issue 8 Pages 083006 - 8pp
Keywords
Abstract In this work, we analyze two possible alternative and model-independent approaches to describe the inflationary period. The first one assumes a general equation of state during inflation due to Mukhanov, while the second one is based on the slow-roll hierarchy suggested by Hoffman and Turner. We find that, remarkably, the two approaches are equivalent from the observational viewpoint, as they single out the same areas in the parameter space, and agree with the inflationary attractors where successful inflation occurs. Rephrased in terms of the familiar picture of a slowly rolling, canonically normalized scalar field, the resulting inflaton excursions in these two approaches are almost identical. Furthermore, once the Galactic dust polarization data from Planck are included in the numerical fits, inflaton excursions can safely take sub-Planckian values.
Address [Boubekeur, Lotfi; Mena, Olga; Ramirez, Hector] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, E-46071 Valencia, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000353138800002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2196
Permanent link to this record
 

 
Author (down) Boubekeur, L.; Giusarma, E.; Mena, O.; Ramirez, H.
Title Do current data prefer a nonminimally coupled inflaton? Type Journal Article
Year 2015 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 91 Issue 10 Pages 103004 - 6pp
Keywords
Abstract We examine the impact of a nonminimal coupling of the inflaton to the Ricci scalar, 1/2 xi R phi(2), on the inflationary predictions. Such a nonminimal coupling is expected to be present in the inflaton Lagrangian on fairly general grounds. As a case study, we focus on the simplest inflationary model governed by the potential V proportional to phi(2), using the latest combined 2015 analysis of Planck and the BICEP2/Keck Array. We find that the presence of a coupling xi is favored at a significance of 99% C.L., assuming that nature has chosen the potential V proportional to phi(2) to generate the primordial perturbations and a number of e-foldings N = 60. Within the context of the same scenario, we find that the value of xi is different from zero at the 2 sigma level. When considering the cross-correlation polarization spectra from the BICEP2/Keck Array and Planck, a value of r = 0.038(-0.030)(+0.039) is predicted in this particular nonminimally coupled scenario. Future cosmological observations may therefore test these values of r and verify or falsify the nonminimally coupled model explored here.
Address [Boubekeur, Lotfi; Mena, Olga; Ramirez, Hector] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, E-46071 Valencia, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000354979300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2237
Permanent link to this record
 

 
Author (down) Bonilla, C.; Ma, E.; Peinado, E.; Valle, J.W.F.
Title Two-loop Dirac neutrino mass and WIMP dark matter Type Journal Article
Year 2016 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 762 Issue Pages 214-218
Keywords Neutrino masses and mixing; Dark matter stability
Abstract We propose a “scotogenic” mechanism relating small neutrino mass and cosmological dark matter. Neutrinos are Dirac fermions with masses arising only in two-loop order through the sector responsible for dark matter. Two triality symmetries ensure both dark matter stability and strict lepton number conservation at higher orders. A global spontaneously broken U(1) symmetry leads to a physical Diraconthat induces invisible Higgs decays which add up to the Higgs to dark matter mode. This enhances sensitivities to spin-independent WIMP dark matter search below m(h)/2.
Address [Bonillaa, Cesar; Valle, Jose W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Edificio Inst Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: cesar.bonilla@ific.uv.es;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000388473700029 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2979
Permanent link to this record
 

 
Author (down) Archidiacono, M.; Giusarma, E.; Melchiorri, A.; Mena, O.
Title Dark radiation in extended cosmological scenarios Type Journal Article
Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 86 Issue 4 Pages 043509 - 7pp
Keywords
Abstract Recent cosmological data have provided evidence for a “dark” relativistic background at high statistical significance. Parameterized in terms of the number of relativistic degrees of freedom N-eff, however, the current data seem to indicate a higher value than the one expected in the standard scenario based on three active neutrinos. This dark radiation component can be characterized not only by its abundance but also by its clustering properties, as its effective sound speed and its viscosity parameter. It is therefore crucial to study the correlations among the dark radiation properties and key cosmological parameters, as the dark energy equation of state or the running of the scalar spectral index, with current and future cosmic microwave background data. We find that dark radiation with viscosity parameters different from their standard values may be misinterpreted as an evolving dark energy component or as a running spectral index in the power spectrum of primordial fluctuations.
Address [Archidiacono, Maria; Melchiorri, Alessandro] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000307276500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1122
Permanent link to this record