|   | 
Details
   web
Records
Author (down) Arnault, P.; Di Molfetta, G.; Brachet, M.; Debbasch, F.
Title Quantum walks and non-Abelian discrete gauge theory Type Journal Article
Year 2016 Publication Physical Review A Abbreviated Journal Phys. Rev. A
Volume 94 Issue 1 Pages 012335 - 6pp
Keywords
Abstract A family of discrete-time quantum walks (DTQWs) on the line with an exact discrete U(N) gauge invariance is introduced. It is shown that the continuous limit of these DTQWs, when it exists, coincides with the dynamics of a Dirac fermion coupled to usual U(N) gauge fields in two-dimensional spacetime. A discrete generalization of the usual U(N) curvature is also constructed. An alternate interpretation of these results in terms of superimposed U(1) Maxwell fields and SU(N) gauge fields is discussed in the Appendix. Numerical simulations are also presented, which explore the convergence of the DTQWs towards their continuous limit and which also compare the DTQWs with classical (i.e., nonquantum) motions in classical SU(2) fields. The results presented in this paper constitute a first step towards quantum simulations of generic Yang-Mills gauge theories through DTQWs.
Address [Arnault, Pablo; Debbasch, Fabrice] Univ Paris 06, Univ Paris 04, PSL Res Univ, LERMA,Observ Paris,CNRS,UMR 8112, F-75014 Paris, France, Email: pablo.arnault@upmc.fr;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9926 ISBN Medium
Area Expedition Conference
Notes WOS:000380095000005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2761
Permanent link to this record
 

 
Author (down) Argyropoulos, T.; Catalan-Lasheras, N.; Grudiev, A.; Mcmonagle, G.; Rodriguez-Castro, E.; Syrachev, I.; Wegner, R.; Woolley, B.; Wuensch, W.; Zha, H.; Dolgashev, V.; Bowden, G.; Haase, A.; Lucas, T.G.; Volpi, M.; Esperante-Pereira, D.; Rajamaki, R.
Title Design, fabrication, and high-gradient testing of an X-band, traveling-wave accelerating structure milled from copper halves Type Journal Article
Year 2018 Publication Physical Review Accelerators and Beams Abbreviated Journal Phys. Rev. Accel. Beams
Volume 21 Issue 6 Pages 061001 - 11pp
Keywords
Abstract A prototype 11.994 GHz, traveling-wave accelerating structure for the Compact Linear Collider has been built, using the novel technique of assembling the structure from milled halves. The use of milled halves has many advantages when compared to a structure made from individual disks. These include the potential for a reduction in cost, because there are fewer parts, as well as a greater freedom in choice of joining technology because there are no rf currents across the halves' joint. Here we present the rf design and fabrication of the prototype structure, followed by the results of the high-power test and post-test surface analysis. During high-power testing the structure reached an unloaded gradient of 100 MV/m at a rf breakdown rate of less than 1.5 x 10(-5) breakdowns/pulse/m with a 200 ns pulse. This structure has been designed for the CLIC testing program but construction from halves can be advantageous in a wide variety of applications.
Address [Argyropoulos, Theodoros; Catalan-Lasheras, Nuria; Grudiev, Alexej; Mcmonagle, Gerard; Rodriguez-Castro, Enrique; Syrachev, Igor; Wegner, Rolf; Woolley, Ben; Wuensch, Walter; Zha, Hao] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland, Email: thomas.geoffrey.lucas@cern.ch
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9888 ISBN Medium
Area Expedition Conference
Notes WOS:000434469900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3608
Permanent link to this record