|   | 
Details
   web
Records
Author (down) de Azcarraga, J.A.; Izquierdo, J.M.
Title D=3 (p, q)-Poincare supergravities from Lie algebra expansions Type Journal Article
Year 2012 Publication Nuclear Physics B Abbreviated Journal Nucl. Phys. B
Volume 854 Issue 1 Pages 276-291
Keywords
Abstract We use the expansion of superalgebras procedure (summarized in the text) to derive Chem-Simons (CS) actions for the (p, q)-Poincare supergravities in three-dimensional spacetimes. After deriving the action for the (p, 0)-Poincare supergravity as a CS theory for the expansion osp(p vertical bar 2: R)(2, 1) of osp(p vertical bar 2: R), we find the general (p, q)-Poincare superalgebras and their associated D = 3 supergravity actions as CS gauge theories from an expansion of the simple osp(p + q vertical bar 2, R) superalgebras, namely osp(p + q vertical bar 2, R)(2, 1, 2).
Address [de Azcarraga, JA] Univ Valencia, Dept Phys Theor, E-46100 Burjassot, Valencia, Spain, Email: j.a.de.azcarraga@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0550-3213 ISBN Medium
Area Expedition Conference
Notes WOS:000296167500011 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 787
Permanent link to this record
 

 
Author (down) de Azcarraga, J.A.; Izquierdo, J.M.
Title Minimal D=4 supergravity from the superMaxwell algebra Type Journal Article
Year 2014 Publication Nuclear Physics B Abbreviated Journal Nucl. Phys. B
Volume 885 Issue Pages 34-45
Keywords
Abstract We show that the first-order D = 4, N = 1 pure supergravity lagrangian four-form can be obtained geometrically as a quadratic expression in the curvatures of the Maxwell superalgebra. This is achieved by noticing that the relative coefficient between the two terms of the lagrangian that makes the action locally supersymmetric also determines trivial field equations for the gauge fields associated with the extra generators of the Maxwell superalgebra. Along the way, a convenient geometric procedure to check the local supersymmetry of a class of lagrangians is developed.
Address [de Azcarraga, J. A.] CSIC UVEG, Dept Fis Teor, Burjassot 46100, Valencia, Spain
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0550-3213 ISBN Medium
Area Expedition Conference
Notes WOS:000339598300003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1857
Permanent link to this record
 

 
Author (down) de Azcarraga, J.A.; Gutiez, D.; Izquierdo, J.M.
Title Extended D=3 Bargmann supergravity from a Lie algebra expansion Type Journal Article
Year 2019 Publication Nuclear Physics B Abbreviated Journal Nucl. Phys. B
Volume 946 Issue Pages 114706 - 14pp
Keywords
Abstract In this paper we show how the method of Lie algebra expansions may be used to obtain, in a simple way, both the extended Bargmann Lie superalgebra and the Chern-Simons action associated to it in three dimensions, starting from D = 3, N = 2 superPoincare and its corresponding Chern-Simons supergravity. (C) 2019 The Author(s). Published by Elsevier B.V.
Address [de Azcarraga, J. A.] CSIC UVEG, Dept Fis Teor, Valencia 46100, Spain, Email: azcarrag@ific.uv.es;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0550-3213 ISBN Medium
Area Expedition Conference
Notes WOS:000487935600012 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 4156
Permanent link to this record
 

 
Author (down) de Adelhart Toorop, R.; Bazzocchi, F.; Morisi, S.
Title Quark mixing in the discrete dark matter model Type Journal Article
Year 2012 Publication Nuclear Physics B Abbreviated Journal Nucl. Phys. B
Volume 856 Issue 3 Pages 670-681
Keywords Discrete flavour symmetries; Dark matter; Meson oscillations
Abstract We consider a model in which dark matter is stable as it is charged under a Z(2) symmetry that is residual after an A(4) flavour symmetry is broken. We consider the possibility to generate the quark masses by charging the quarks appropriately under A(4). We find that it is possible to generate the CKM mixing matrix by an interplay of renormalisable and dimension-six operators. In this set-up, we predict the third neutrino mixing angle to be large and the dark matter relic density to be in the correct range. Low energy observables – in particular meson-antimeson oscillations – are hard to facilitate. We find that only in a situation where there is a strong cancellation between the Standard Model contribution and the contribution of the new Higgs fields, B meson oscillations are under control.
Address [Toorop, Reinier de Adelhart] Nikhef Theory Grp, NL-1098 XG Amsterdam, Netherlands, Email: reintoorop@nikhef.nl
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0550-3213 ISBN Medium
Area Expedition Conference
Notes WOS:000300028200003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 891
Permanent link to this record
 

 
Author (down) Das, A.; Mandal, S.
Title Bounds on the triplet fermions in type-III seesaw and implications for collider searches Type Journal Article
Year 2021 Publication Nuclear Physics B Abbreviated Journal Nucl. Phys. B
Volume 966 Issue Pages 115374 - 33pp
Keywords
Abstract Type-III seesaw is a simple extension of the Standard Model (SM) with the SU(2)(L) triplet fermion with zero hypercharge. It can explain the origin of the tiny neutrino mass and flavor mixing. After the electroweak symmetry breaking the light neutrino mass is generated by the seesaw mechanism which further ensures the mixings between the light neutrino and heavy neutral lepton mass eigenstates. If the triplet fermions are around the electroweak scale having sizable mixings with the SM sector allowed by the correct gauge symmetry, they can be produced at the high energy colliders leaving a variety of characteristic signatures. Based on a simple and concrete realizations of the model we employ a general parametrization for the neutrino Dirac mass matrix and perform a parameter scan to identify the allowed regions satisfying the experimental constraints from the neutrino oscillation data, the electroweak precision measurements and the lepton-flavor violating processes, respectively considering the normal and inverted neutrino mass hierarchies. These parameter regions can be probed at the different collider experiments.
Address [Das, Arindam] Osaka Univ, Dept Phys, Toyonaka, Osaka 5600043, Japan, Email: arindam.das@het.phys.sci.osaka-u.ac.jp;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0550-3213 ISBN Medium
Area Expedition Conference
Notes WOS:000646135900011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4829
Permanent link to this record
 

 
Author (down) Cirigliano, V.; Jenkins, J.P.; Gonzalez-Alonso, M.
Title Semileptonic decays of light quarks beyond the Standard Model Type Journal Article
Year 2010 Publication Nuclear Physics B Abbreviated Journal Nucl. Phys. B
Volume 830 Issue 1-2 Pages 95-115
Keywords Semileptonic decays; CKM unitarity; Effective theory; Beyond the Standard Model
Abstract We describe non-standard contributions to semileptonic processes in a model independent way in terms of in SU(2)(L) x U(1)(Y) invariant effective lagrangian at the weak scale, front which we derive the low-energy effective lagrangian governing muon and beta decays. We find that the deviation from Cabibbo universality, Delta(CKM) equivalent to vertical bar V-ud vertical bar(2) + vertical bar V-us vertical bar(2) + vertical bar V-ub vertical bar(2) – 1, receives contributions from four effective operators. The phenomenological bound Delta(CKM) = (-1 +/- 6) x 10(-4) provides strong constraints on all four operators, corresponding to art effective scale Lambda > 11 TeV (90% CL). Depending on the operator, this constraint is at the same level or better then the Z pole observables. Conversely, precision electroweak constraints alone would allow universality violations as large as Delta(CKM) = -0.01 (90% CL). An observed Delta(CKM) not equal 0 at this level Could be explained in terms of a single four-fermion operator which is relatively poorly constrained by electroweak precision measurements.
Address [Cirigliano, Vincenzo; Jenkins, James P.; Gonzalez-Alonso, Martin] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA, Email: cirigliano@lanl.gov
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0550-3213 ISBN Medium
Area Expedition Conference
Notes ISI:000275150000003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 497
Permanent link to this record
 

 
Author (down) Chachamis, G.; Hentschinski, M.; Madrigal Martinez, J.D.; Sabio Vera, A.
Title Gluon Regge trajectory at two loops from Lipatov's high energy effective action Type Journal Article
Year 2013 Publication Nuclear Physics B Abbreviated Journal Nucl. Phys. B
Volume 876 Issue 2 Pages 453-472
Keywords
Abstract We present the derivation of the two-loop gluon Regge trajectory using Lipatov's high energy effective action and a direct evaluation of Feynman diagrams. Using a gauge invariant regularization of high energy divergences by deforming the light-cone vectors of the effective action, we determine the two-loop self-energy of the reggeized gluon, after computing the master integrals involved using the Mellin-Barnes representations technique. The self-energy is further matched to QCD through a recently proposed subtraction prescription. The Regge trajectory of the gluon is then defined through renormalization of the reggeized gluon propagator with respect to high energy divergences. Our result is in agreement with previous computations in the literature, providing a non-trivial test of the effective action and the proposed subtraction and renormalization framework.
Address [Chachamis, G.] Inst Fis Corpuscular UVEG CSIC, E-46980 Valencia, Spain, Email: martin.hentschinski@gmail.com
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0550-3213 ISBN Medium
Area Expedition Conference
Notes WOS:000325903700004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1622
Permanent link to this record
 

 
Author (down) Carrasco, N.; Deuzeman, A.; Dimopoulos, P.; Frezzotti, R.; Gimenez, V.; Herdoiza, G.; Lami, P.; Lubicz, V.; Palao, D.; Picca, E.; Reker, S.; Riggio, L.; Rossi, G.C.; Sanfilippo, F.; Scorzato, L.; Simula, S.; Tarantino, C.; Urbach, C.; Wenger, U.
Title Up, down, strange and charm quark masses with N-f=2+1+1 twisted mass lattice QCD Type Journal Article
Year 2014 Publication Nuclear Physics B Abbreviated Journal Nucl. Phys. B
Volume 887 Issue Pages 19-68
Keywords
Abstract We present a lattice QCD calculation of the up, down, strange and charm quark masses performed using the gauge configurations produced by the European Twisted Mass Collaboration with N-f = 2 + 1 + 1 dynamical quarks, which include in the sea, besides two light mass degenerate quarks, also the strange and charm quarks with masses close to their physical values. The simulations are based on a unitary setup for the two light quarks and on a mixed action approach for the strange and charm quarks. The analysis uses data at three values of the lattice spacing and pion masses in the range 210-450 MeV, allowing for accurate continuum limit and controlled chiral extrapolation. The quark mass renormalization is carried out non-perturbatively using the RI'-MOM method. The results for the quark masses converted to the (MS) over bar scheme are: m(ud) (2 GeV) = 3.70(17) MeV, m(s)(2 GeV) = 99.6(4.3) MeV and m(c)(m(c)) = 1.348(46) GeV. We obtain also the quark mass ratios m(s)/m(ud) = 26.66(32) and m(c)/m(s) = 11.62(16). By studying the mass splitting between the neutral and charged kaons and using available lattice results for the electromagnetic contributions, we evaluate m(u)/m(d) = 0.470(56), leading to m(u) = 2.36(24) MeV and m(d) = 5.03(26) MeV.
Address [Carrasco, N.; Lami, P.; Lubicz, V.; Picca, E.; Riggio, L.; Simula, S.; Tarantino, C.] Ist Nazl Fis Nucl, Sez Roma Tre, I-00146 Rome, Italy
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0550-3213 ISBN Medium
Area Expedition Conference
Notes WOS:000343339700002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1976
Permanent link to this record
 

 
Author (down) Campanario, F.; Rauch, M.; Sapeta, S.
Title W+W- production at high transverse momenta beyond NLO Type Journal Article
Year 2014 Publication Nuclear Physics B Abbreviated Journal Nucl. Phys. B
Volume 879 Issue Pages 65-79
Keywords
Abstract Pair production of W gauge bosons is an important process at the LHC entering many experimental analyses, both as background in new-physics searches or Higgs measurements and as signal in precision studies and tests of the Standard Model. Therefore, accurate predictions for this class of processes are of great interest in order to exploit the full potential of LHC measurements. We use the LoopSim method to combine NLO QCD results for WW and WW + jet, as well as the loop-squared gluon-fusion contribution, to obtain approximate NNLO predictions for WW production. The cross sections are calculated with VBFNLO and include leptonic decays of the W bosons as well as finite-width and off-shell effects. We find that the size of the additional corrections beyond NLO can be significant and well outside of the NLO error bands given by renormalization and factorization scale variation. Applying a jet veto, we observe further negative corrections at NNLO. which we relate to the presence of large Sudakov logarithms.
Address [Campanario, Francisco] Univ Valencia, CSIC, IFIC, Div Theory, E-46980 Valencia, Spain, Email: francisco.campanario@ific.uv.es;
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0550-3213 ISBN Medium
Area Expedition Conference
Notes WOS:000332352600004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1734
Permanent link to this record
 

 
Author (down) Camarero, D.; de Azcarraga, J.A.; Izquierdo, J.M.
Title Bosonic D=11 supergravity from a generalized Chern-Simons action Type Journal Article
Year 2017 Publication Nuclear Physics B Abbreviated Journal Nucl. Phys. B
Volume 923 Issue Pages 633-652
Keywords
Abstract It is shown that the action of the bosonic sector of D= 11supergravity may be obtained by means of a suitable scaling of the originally dimensionless fields of a generalized Chern-Simons action. This follows from the eleven-form CS-potential of the most general linear combination of closed, gauge invariant twelve-forms involving the sp(32)-valued two-form curvatures supplemented by a three-form field. In this construction, the role of the skewsymmetric four-index auxiliary function needed for the first order formulation of D= 11supergravity is played by the gauge field associated with the five Lorentz indices generator of the bosonic sp(32) subalgebra of osp(1|32).
Address [Camarero, D.; Izquierdo, J. M.] Univ Valladolid, Dept Fis Teor, E-47011 Valladolid, Spain, Email: j.a.de.azcarraga@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0550-3213 ISBN Medium
Area Expedition Conference
Notes WOS:000413405200028 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3333
Permanent link to this record