toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Araujo Filho, A.A.; Reis, J.A.A.S.; Ghosh, S. url  doi
openurl 
  Title Quantum gases on a torus Type Journal Article
  Year 2023 Publication International Journal of Geometric Methods in Modern Physics Abbreviated Journal Int. J. Geom. Methods Mod. Phys.  
  Volume 20 Issue 10 Pages 2350178 - 19pp  
  Keywords Thermodynamic properties; non-Cartesian geometries; grand canonical ensemble; noninteracting and interacting quantum gases; spinless; bosons and fermion particles  
  Abstract This paper is aimed at studying the thermodynamic properties of quantum gases confined to a torus. To do that, we consider noninteracting gases within the grand canonical ensemble formalism. In this context, fermions and bosons are taken into account and the calculations are properly provided in both analytical and numerical manners. In particular, the system turns out to be sensitive to the topological parameter under consideration: the winding number. Furthermore, we also derive a model in order to take into account interacting quantum gases. To corroborate our results, we implement such a method for two different scenarios: a ring and a torus.  
  Address [Araujo Filho, A. A.] Univ Fed Ceara UFC, Dept Fis, Campus Pici,CP 6030, BR-60455760 Fortaleza, CE, Brazil, Email: dilto@fisica.ufc.br;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0219-8878 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000988814200003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5553  
Permanent link to this record
 

 
Author (up) Araujo Filho, A.A.; Zare, S.; Porffrio, P.J.; Kriz, J.; Hassanabadi, H. url  doi
openurl 
  Title Thermodynamics and evaporation of a modified Schwarzschild black hole in a non-commutative gauge theory Type Journal Article
  Year 2023 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 838 Issue Pages 137744 - 9pp  
  Keywords Thermodynamic properties; Black hole; Non-commutative gauge theory; Evaporation process  
  Abstract In this work, we study the thermodynamic properties on a non-commutative background via gravitational gauge field potentials. This procedure is accomplished after contracting de Sitter (dS) group, SO(4, 1), with the Poincare group, ISO(3, 1). Particularly, we focus on a static spherically symmetric black hole. In this manner, we calculate the modified Hawking temperature and the other deformed thermal state quantities, namely, entropy, heat capacity, Helmholtz free energy and pressure. Finally, we also investigate the black hole evaporation process in such a context.  
  Address [Araujo Filho, A. A.] Univ Valencia, Dept Fis Teor, Burjassot 46100, Valencia, Spain, Email: dilto@fisica.ufc.br;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000935398000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5483  
Permanent link to this record
 

 
Author (up) Arbelaez, C.; Carcamo Hernandez, A.E.; Cepedello, R.; Kovalenko, S.; Schmidt, I. url  doi
openurl 
  Title Sequentially loop suppressed fermion masses from a single discrete symmetry Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 06 Issue 6 Pages 043 - 24pp  
  Keywords Beyond Standard Model; Neutrino Physics; Quark Masses and SM Parameters  
  Abstract We propose a systematic and renormalizable sequential loop suppression mechanism to generate the hierarchy of the Standard Model fermion masses from one discrete symmetry. The discrete symmetry is sequentially softly broken in order to generate one-loop level masses for the bottom, charm, tau and muon leptons and two-loop level masses for the lightest Standard Model charged fermions. The tiny masses for the light active neutrinos are produced from radiative type-I seesaw mechanism, where the Dirac mass terms are effectively generated at two-loop level.  
  Address [Arbelaez, Carolina; Carcamo Hernandez, A. E.; Schmidt, Ivan] Univ Tecn Federico Santa Maria, Casilla 110-5, Valparaiso, Chile, Email: carolina.arbelaez@usm.cl;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000540500300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4430  
Permanent link to this record
 

 
Author (up) Arbelaez, C.; Cepedello, R.; Helo, J.C.; Hirsch, M.; Kovalenko, S. url  doi
openurl 
  Title How many 1-loop neutrino mass models are there? Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 023 - 29pp  
  Keywords Other Weak Scale BSM Models; Models for Dark Matter; Neutrino Interactions  
  Abstract It is well-known that at tree-level the d = 5 Weinberg operator can be generated in exactly three different ways, the famous seesaw models. In this paper we study the related question of how many phenomenologically consistent 1-loop models one can construct at d=5. First, we discuss that there are two possible classes of 1-loop neutrino mass models, that allow avoiding stable charged relics: (i) models with dark matter candidates and (ii) models with “exits”. Here, we define “exits” as particles that can decay into standard model fields. Considering 1-loop models with new scalars and fermions, we find in the dark matter class a total of (115+203) models, while in the exit class we find (38+368) models. Here, 115 is the number of DM models, which require a stabilizing symmetry, while 203 is the number of models which contain a dark matter candidate, which maybe accidentally stable. In the exit class the 38 refers to models, for which one (or two) of the internal particles in the loop is a SM field, while the 368 models contain only fields beyond the SM (BSM) in the neutrino mass diagram. We then study the RGE evolution of the gauge couplings in all our 1-loop models. Many of the models in our list lead to Landau poles in some gauge coupling at rather low energies and there is exactly one model which unifies the gauge couplings at energies above 10(15) GeV in a numerically acceptable way.  
  Address [Arbelaez, Carolina] Univ Tecn Federico Santa Maria, Dept Phys, Ave Espana 1680, Valparaiso, Chile, Email: carolina.arbelaez@usm.cl;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000835685500003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5320  
Permanent link to this record
 

 
Author (up) Arbelaez, C.; Dib, C.; Monsalvez-Pozo, K.; Schmidt, I. url  doi
openurl 
  Title Quasi-Dirac neutrinos in the linear seesaw model Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 07 Issue 7 Pages 154 - 22pp  
  Keywords Beyond Standard Model; Neutrino Physics  
  Abstract We implement a minimal linear seesaw model (LSM) for addressing the Quasi-Dirac (QD) behaviour of heavy neutrinos, focusing on the mass regime of M-N less than or similar to M-W. Here we show that for relatively low neutrino masses, covering the few GeV range, the same-sign to opposite-sign dilepton ratio, R-ll, can be anywhere between 0 and 1, thus signaling a Quasi-Dirac regime. Particular values of R-ll are controlled by the width of the QD neutrino and its mass splitting, the latter being equal to the light-neutrino mass m(nu) in the LSM scenario. The current upper bound on m(nu 1) together with the projected sensitivities of current and future |U-N l|(2) experimental measurements, set stringent constraints on our low-scale QD mass regime. Some experimental prospects of testing the model by LHC displaced vertex searches are also discussed.  
  Address [Arbelaez, Carolina; Dib, Claudio; Schmidt, Ivan] Univ Tecn Federico Santa Maria, Ave Espana 1680, Valparaiso, Chile, Email: carolina.arbelaez@usm.cl;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000677622200005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4930  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva