|   | 
Details
   web
Records
Author (up) Fernandez-Martinez, E.; Lopez-Pavon, J.; Ota, T.; Rosauro-Alcaraz, S.
Title nu electroweak baryogenesis Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 063 - 28pp
Keywords Beyond Standard Model; Cosmology of Theories beyond the SM; CP viola- tion; Neutrino Physics
Abstract We investigate if the CP violation necessary for successful electroweak baryo- genesis may be sourced by the neutrino Yukawa couplings. In particular, we consider an electroweak scale Seesaw realization with sizable Yukawas where the new neutrino singlets form (pseudo)-Dirac pairs, as in the linear or inverse Seesaw variants. We find that the baryon asymmetry obtained strongly depends on how the neutrino masses vary within the bubble walls. Moreover, we also find that flavour effects critically impact the final asymmetry obtained and that, taking them into account, the observed value may be obtained in some regions of the parameter space. This source of CP violation naturally avoids the strong constraints from electric dipole moments and links the origin of the baryon asymmetry of the Universe with the mechanism underlying neutrino masses. Interestingly, the mixing of the active and heavy neutrinos needs to be sizable and could be probed at the LHC or future collider experiments.
Address [Fernandez-Martinez, E.; Ota, T.; Rosauro-Alcaraz, S.] Univ Autonoma Madrid, Dept Fis Teor, IFT UAM CSIC, Madrid 28049, Spain, Email: enrique.fernandez-martinez@uam.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000582727900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4582
Permanent link to this record
 

 
Author (up) Feruglio, F.; Gherardi, V.; Romanino, A.; Titov, A.
Title Modular invariant dynamics and fermion mass hierarchies around tau = i Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 242 - 26pp
Keywords Beyond Standard Model; Neutrino Physics; Supersymmetric Standard Model; Compactification and String Models
Abstract We discuss fermion mass hierarchies within modular invariant flavour models. We analyse the neighbourhood of the self-dual point tau = i, where modular invariant theories possess a residual Z(4) invariance. In this region the breaking of Z(4) can be fully described by the spurion epsilon approximate to tau – i, that flips its sign under Z(4). Degeneracies or vanishing eigenvalues of fermion mass matrices, forced by the Z(4) symmetry at tau = i, are removed by slightly deviating from the self-dual point. Relevant mass ratios are controlled by powers of vertical bar epsilon vertical bar. We present examples where this mechanism is a key ingredient to successfully implement an hierarchical spectrum in the lepton sector, even in the presence of a non-minimal Kahler potential.
Address [Feruglio, Ferruccio; Titov, Arsenii] Univ Padua, Dipartimento Fis & Astron G Galilei, Via Marzolo 8, I-35131 Padua, Italy, Email: feruglio@pd.infn.it;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000738737200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5070
Permanent link to this record
 

 
Author (up) Fidalgo, J.; Lopez-Fogliani, D.E.; Muñoz, C.; Ruiz de Austri, R.
Title The Higgs sector of the μnu SSM and collider physics Type Journal Article
Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 020 - 33pp
Keywords Higgs Physics; Supersymmetric Effective Theories; Beyond Standard Model
Abstract The μnu SSM is a supersymmetric standard model that accounts for light neutrino masses and solves the μproblem of the MSSM by simply using right-handed neutrino superfields. Since this mechanism breaks R-parity, a peculiar structure for the mass matrices is generated. The neutral Higgses are mixed with the right- and left-handed sneutrinos producing 8x8 neutral scalar mass matrices. We analyse the Higgs sector of the μnu SSM in detail, with special emphasis in possible signals at colliders. After studying in general the decays of the Higges, we focus on those processes that are genuine of the μnu SSM, and could serve to distinguish it form other supersymmetric models. In particular, we present viable benchmark points for LHC searches. For example, we find decays of a MSSM-like Higgs into two lightest neutralinos, with the latter decaying inside the detector leading to displaced vertices, and producing final states with 4 and 8 b-jets plus missing energy. Final states with leptons and missing energy are also found.
Address [Fidalgo, Javier; Munoz, Carlos] Univ Autonoma Madrid, Dept Fis Teor UAM, E-28049 Madrid, Spain, Email: javier.fidalgo@uam.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000296917100020 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 831
Permanent link to this record
 

 
Author (up) Fileviez Perez, P.; Golias, E.; Murgui, C.; Plascencia, A.D.
Title The Higgs and leptophobic force at the LHC Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 087 - 19pp
Keywords Beyond Standard Model; Higgs Physics
Abstract The Higgs boson could provide the key to discover new physics at the Large Hadron Collider. We investigate novel decays of the Standard Model (SM) Higgs boson into leptophobic gauge bosons which can be light in agreement with all experimental constraints. We study the associated production of the SM Higgs and the leptophobic gauge boson that could be crucial to test the existence of a leptophobic force. Our results demonstrate that it is possible to have a simple gauge extension of the SM at the low scale, without assuming very small couplings and in agreement with all the experimental bounds that can be probed at the LHC.
Address [Perez, Pavel Fileviez; Golias, Elliot; Plascencia, Alexis D.] Case Western Reserve Univ, Dept Phys, Cleveland, OH 44106 USA, Email: pxf112@case.edu;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000553159100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4479
Permanent link to this record
 

 
Author (up) Fileviez Perez, P.; Murgui, C.; Plascencia, A.D.
Title The QCD axion and unification Type Journal Article
Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 11 Issue 11 Pages 093 - 21pp
Keywords Beyond Standard Model; Cosmology of Theories beyond the SM; GUT
Abstract The QCD axion is one of the most appealing candidates for the dark matter in the Universe. In this article, we discuss the possibility to predict the axion mass in the context of a simple renormalizable grand unified theory where the Peccei-Quinn scale is determined by the unification scale. In this framework, the axion mass is predicted to be in the range ma, <^> (3-13) x 10-9 eV. We study the axion phenomenology and find that the ABRACADABRA and CASPEr-Electric experiments will be able to fully probe this mass window.
Address [Perez, Pavel Fileviez; Plascencia, Alexis D.] Case Western Reserve Univ, Phys Dept, Cleveland, OH 44106 USA, Email: pxf112@case.edu;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000514868300004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4296
Permanent link to this record
 

 
Author (up) Fileviez Perez, P.; Murgui, C.; Plascencia, A.D.
Title Axion dark matter, proton decay and unification Type Journal Article
Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages 091 - 18pp
Keywords Beyond Standard Model; Cosmology of Theories beyond the SM; GUT
Abstract We discuss the possibility to predict the QCD axion mass in the context of grand unified theories. We investigate the implementation of the DFSZ mechanism in the context of renormalizable SU(5) theories. In the simplest theory, the axion mass can be predicted with good precision in the range m(a) = (2-16) neV, and there is a strong correlation between the predictions for the axion mass and proton decay rates. In this context, we predict an upper bound for the proton decay channels with antineutrinos, tau(p -> K+(nu) over bar) less than or similar to 4 x 10(37) yr and tau(p -> pi(+)(nu) over bar) less than or similar to 2 x 10(36) yr. This theory can be considered as the minimal realistic grand unified theory with the DFSZ mechanism and it can be fully tested by proton decay and axion experiments.
Address [Fileviez Perez, Pavel; Plascencia, Alexis D.] Case Western Reserve Univ, Phys Dept, Cleveland, OH 44106 USA, Email: pxf112@case.edu;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000588065200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4605
Permanent link to this record
 

 
Author (up) Fonseca, R.M.; Grimus, W.
Title Classification of lepton mixing matrices from finite residual symmetries Type Journal Article
Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 09 Issue 9 Pages 033 - 54pp
Keywords Global Symmetries; Beyond Standard Model; Neutrino Physics
Abstract Assuming that neutrinos are Majorana particles, we perform a complete classification of all possible mixing matrices which are fully determined by residual symmetries in the charged-lepton and neutrino mass matrices. The classification is based on the assumption that the residual symmetries originate from a finite flavour symmetry group. The mathematical tools which allow us to accomplish this classification are theorems on sums of roots of unity. We find 17 sporadic cases plus one infinite series of mixing matrices associated with three-flavour mixing, all of which have already been discussed in the literature. Only the infinite series contains mixing matrices which are compatible with the data at the 3 sigma level.
Address [Fonseca, Renato M.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, E-46071 Valencia, Spain, Email: renato.fonseca@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000347898400002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2084
Permanent link to this record
 

 
Author (up) Fonseca, R.M.; Hirsch, M.
Title A flipped 331 model Type Journal Article
Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 003 - 12pp
Keywords Beyond Standard Model; Gauge Symmetry; Neutrino Physics
Abstract Models based on the extended SU(3)(C) x SU(3)(L) x U(1)(X) (331) gauge group usually follow a common pattern: two families of left-handed quarks are placed in anti triplet representations of the SU(3)(L) group; the remaining quark family, as well as the left-handed leptons, are assigned to triplets (or vice-versa). In this work we present a flipped 331 model where this scheme is reversed: all three quark families are in the same representation and it is the lepton families which are discriminated by the gauge symmetry. We discuss fermion masses and mixing, as well as Z' interactions, in a minimal model implementing this idea.
Address [Fonseca, Renato M.; Hirsch, Martin] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna,Calle Jose Beltran, E-46980 Paterna, Valencia, Spain, Email: renato.fonseca@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000381218300003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2782
Permanent link to this record
 

 
Author (up) Fontes, D.; Romao, J.C.; Valle, J.W.F.
Title Electroweak breaking and Higgs boson profile in the simplest linear seesaw model Type Journal Article
Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 245 - 28pp
Keywords Beyond Standard Model; Higgs Physics; Neutrino Physics
Abstract We examine the simplest realization of the linear seesaw mechanism within the Standard Model gauge structure. Besides the standard scalar doublet, there are two lepton-number-carrying scalars, a nearly inert SU(2)(L) doublet and a singlet. Neutrino masses result from the spontaneous violation of lepton number, implying the existence of a Nambu-Goldstone boson. Such “majoron” would be copiously produced in stars, leading to stringent astrophysical constraints. We study the profile of the Higgs bosons in this model, including their effective couplings to the vector bosons and their invisible decay branching ratios. A consistent electroweak symmetry breaking pattern emerges with a compressed spectrum of scalars in which the “Standard Model” Higgs boson can have a sizeable invisible decay into the invisible majorons.
Address [Fontes, Duarte; Romao, Jorge C.] Univ Lisbon, Inst Super Tecn, Dept Fis, Ave Rovisco Pais 1, P-1049001 Lisbon, Portugal, Email: duartefontes@tecnico.ulisboa.pt;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000495737300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4199
Permanent link to this record
 

 
Author (up) Forero, D.V.; Morisi, S.; Tortola, M.; Valle, J.W.F.
Title Lepton flavor violation and non-unitary lepton mixing in low-scale type-I seesaw Type Journal Article
Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 09 Issue 9 Pages 142 - 18pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract Within low-scale seesaw mechanisms, such as the inverse and linear seesaw, one expects (i) potentially large lepton flavor violation (LFV) and (ii) sizeable non-standard neutrino interactions (NSI). We consider the interplay between the magnitude of non-unitarity effects in the lepton mixing matrix, and the constraints that follow from LFV searches in the laboratory. We find that NSI parameters can be sizeable, up to percent level in some cases, while LFV rates, such as that for μ-> e gamma, lie within current limits, including the recent one set by the MEG collaboration. As a result the upcoming long baseline neutrino experiments offer a window of opportunity for complementary LFV and weak universality tests.
Address [Forero, DV; Morisi, S; Tortola, M; Valle, JWF] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp,Edificio Inst Paterna, E-46071 Valencia, Spain, Email: dvanegas@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000296086700001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 817
Permanent link to this record