toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Ros, A.; Lerche, C.W.; Sebastia, A.; Sanchez, F.; Benlloch, J.M. doi  openurl
  Title Retroreflector arrays for better light collection efficiency of gamma-ray imaging detectors with continuous scintillation crystals without DOI misestimation Type Journal Article
  Year 2014 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 9 Issue Pages P04009 - 14pp  
  Keywords Gamma detectors (scintillators, CZT, HPG, HgI etc); Interaction of radiation with matter; Gamma camera, SPECT, PET PET/CT, coronary CT angiography (CTA); Detector design and construction technologies and materials  
  Abstract A method to improve light collection efficiency of gamma-ray imaging detectors by using retroreflector arrays has been tested, simulations of the behaviour of the scintillation light illuminating the retroreflector surface have been made. Measurements including retroreflector arrays in the setup have also been taken. For the measurements, positron emission tomography (PET) detectors with continuous scintillation crystals have been used. Each detector module consists of a continuous LSO-scintillator of dimensions 49x49x10 mm(3) and a H8500 position-sensitive photo-multiplier (PSPMT) from Hamamatsu. By using a continuous scintillation crystal, the scintillation light distribution has not been destroyed and the energy, the centroids along the x- and y-direction and the depth of interaction (DOI) can be estimated. Simulations have also been run taking into account the use of continuous scintillation crystals. Due to the geometry of the continuous scintillation crystals in comparison with pixelated crystals, a good light collection efficiency is necessary to correctly reconstruct the impact point of the gamma-ray. The aim of this study is to investigate whether micro-machine retro-reflectors improve light yield without misestimation of the impact point. The results shows an improvement on the energy and centroid resolutions without worsening the depth of interaction resolution. Therefore it can be concluded that using retroreflector arrays at the entrance side of the scintillation crystal improves light collection efficiency without worsening the impact point estimation.  
  Address [Ros, A.] Inst Fis Corpuscular IFIC, Valencia 46980, Spain, Email: anrogar2@i3m.upv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000336123800049 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1798  
Permanent link to this record
 

 
Author (up) Sorel, M. url  doi
openurl 
  Title Expected performance of an ideal liquid argon neutrino detector with enhanced sensitivity to scintillation light Type Journal Article
  Year 2014 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 9 Issue Pages P10002 - 25pp  
  Keywords Noble liquid detectors (scintillation, ionization, double-phase); Neutrino detectors; Calorimeters; Time projection chambers  
  Abstract Scintillation light is used in liquid argon (LAr) neutrino detectors to provide a trigger signal, veto information against cosmic rays, and absolute event timing. In this work, we discuss additional opportunities offered by detectors with enhanced sensitivity to scintillation light, that is with light collection efficiencies of about 10(-3). We focus on two key detector performance indicators for neutrino oscillation physics: calorimetric neutrino energy reconstruction and neutrino/antineutrino separation in a non-magnetized detector. Our results are based on detailed simulations, with neutrino interactions modelled according to the GENIE event generator, while the charge and light responses of a large LAr ideal detector are described by the Geant4 and NEST simulation tools. A neutrino energy resolution as good as 3.3% RMS for 4 GeV electron neutrino charged-current interactions can in principle be obtained in a large detector of this type, by using both charge and light information. By exploiting muon capture in argon and scintillation light information to veto muon decay electrons, we also obtain muon neutrino identification efficiencies of about 50%, and muon antineutrino misidentification rates at the few percent level, for few-GeV neutrino interactions that are fully contained. We argue that the construction of large LAr detectors with sufficiently high light collection efficiencies is in principle possible.  
  Address [Sorel, M.] CSIC, Inst Fis Corpuscular IFIC, Valencia 46980, Spain, Email: sorel@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000345858500045 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2056  
Permanent link to this record
 

 
Author (up) Super-Kamiokande Collaboration (Abe, K. et al); Molina Sedgwick, S. url  doi
openurl 
  Title Neutron tagging following atmospheric neutrino events in a water Cherenkov detector Type Journal Article
  Year 2022 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 17 Issue 10 Pages P10029 - 41pp  
  Keywords Particle identification methods; Cherenkov detectors; Neutrino detectors; Large detector systems for particle and astroparticle physics  
  Abstract We present the development of neutron-tagging techniques in Super-Kamiokande IV using a neural network analysis. The detection efficiency of neutron capture on hydrogen is estimated to be 26%, with a mis-tag rate of 0.016 per neutrino event. The uncertainty of the tagging efficiency is estimated to be 9.0%. Measurement of the tagging efficiency with data from an Americium-Beryllium calibration agrees with this value within 10%. The tagging procedure was performed on 3,244.4 days of SK-IV atmospheric neutrino data, identifying 18,091 neutrons in 26,473 neutrino events. The fitted neutron capture lifetime was measured as 218 +/- 9 μs.  
  Address [Abe, K.; Haga, Y.; Hayato, Y.; Hiraide, K.; Ieki, K.; Ikeda, M.; Imaizumi, S.; Iyogi, K.; Kameda, J.; Kanemura, Y.; Kataoka, Y.; Kato, Y.; Kishimoto, Y.; Miki, S.; Mine, S.; Miura, M.; Mochizuki, T.; Moriyama, S.; Nagao, Y.; Nakahata, M.; Nakajima, T.; Nakano, Y.; Nakayama, S.; Okada, T.; Okamoto, K.; Orii, A.; Sato, K.; Sekiya, H.; Shiozawa, M.; Sonoda, Y.; Suzuki, Y.; Takeda, A.; Takemoto, Y.; Takenaka, A.; Tanaka, H.; Tasaka, S.; Tomura, T.; Ueno, K.; Watanabe, S.; Yano, T.; Yokozawa, T.] Univ Tokyo, Inst Cosm Ray Res, Kamioka Observ, Gifu, Akita 5061205, Japan, Email: hayato@icrr.u-tokyo.ac.jp  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000898723700008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5441  
Permanent link to this record
 

 
Author (up) T2K Collaboration (Abe, K. et al); Antonova, M.; Cervera-Villanueva, A.; Molina Bueno, L.; Novella, P. url  doi
openurl 
  Title Scintillator ageing of the T2K near detectors fro 2010 to 2021 Type Journal Article
  Year 2022 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 17 Issue 10 Pages P10028 - 36pp  
  Keywords Gamma detectors (scintillators, CZT, HPGe, HgI etc); Neutrino detectors; Performance of High Energy Physics Detectors; Scintillators; scintillation and light emission processes (solid, gas and liquid scintillators)  
  Abstract The T2K experiment widely uses plastic scintillator as a target for neutrino interactions and an active medium for the measurement of charged particles produced in neutrino interactions at its near detector complex. Over 10 years of operation the measured light yield recorded by the scintillator based subsystems has been observed to degrade by 0.9-2.2% per year. Extrapolation of the degradation rate through to 2040 indicates the recorded light yield should remain above the lower threshold used by the current reconstruction algorithms for all subsystems. This will allow the near detectors to continue contributing to important physics measurements during the T2K-II and Hyper-Kamiokande eras. Additionally, work to disentangle the degradation of the plastic scintillator and wavelength shifting fibres shows that the reduction in light yield can be attributed to the ageing of the plastic scintillator. The long component of the attenuation length of the wavelength shifting fibres was observed to degrade by 1.3-5.4% per year, while the short component of the attenuation length did not show any conclusive degradation.  
  Address [Labarga, L.] Univ Autonoma Madrid, Dept Theoret Phys, ES-28049 Madrid, Spain, Email: m.lawe@lancaster.ac.uk  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000898723700007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5442  
Permanent link to this record
 

 
Author (up) Unno, Y. et al; Bernabeu, J.; Lacasta, C.; Solaz, C.; Soldevila, U. doi  openurl
  Title Specifications and pre-production of n plus -in-p large-format strip sensors fabricated in 6-inch silicon wafers, ATLAS18, for the Inner Tracker of the ATLAS Detector for High-Luminosity Large Hadron Collider Type Journal Article
  Year 2023 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 18 Issue 3 Pages T03008 - 29pp  
  Keywords Particle tracking detectors (Solid-state detectors); Radiation-hard detectors; Si microstrip and pad detectors  
  Abstract The ATLAS experiment is constructing new all-silicon inner tracking system for HL-LHC. The strip detectors cover the radial extent of 40 to 100 cm. A new approach is adopted to use p-type silicon material, making the readout in n+-strips, so-called n+-in-p sensors. This allows for enhanced radiation tolerance against an order of magnitude higher particle fluence compared to the LHC. To cope with varying hit rates and occupancies as a function of radial distance, there are two barrel sensor types, the short strips (SS) for the inner 2 and the long strips (LS) for the outer 2 barrel cylinders, respectively. The barrel sensors exhibit a square, 9.8 x 9.8 cm2, geometry, the largest possible sensor area from a 6-inch wafer. The strips are laid out in parallel with a strip pitch of 75.5 μm and 4 or 2 rows of strip segments. The strips are AC-coupled and biased via polysilicon resistors. The endcap sensors employ a “stereo-annulus” geometry exhibiting a skewed-trapezoid shapes with circular edges. They are designed in 6 unique shapes, R0 to R5, corresponding to progressively increasing radial extents and which allows them to fit within the petal geometry and the 6-inch wafer maximally. The strips are in fan-out geometry with an in-built rotation angle, with a mean pitch of approximately 75 μm and 4 or 2 rows of strip segments. The eight sensor types are labeled as ATLAS18xx where xx stands for SS, LS, and R0 to R5. According to the mechanical and electrical specifications, CAD files for wafer processing were laid out, following the successful designs of prototype barrel and endcap sensors, together with a number of optimizations. A pre-production was carried out prior to the full production of the wafers. The quality of the sensors is reviewed and judged excellent through the test results carried out by vendor. These sensors are used for establishing acceptance procedures and to evaluate their performance in the ATLAS collaboration, and subsequently for pre-production of strip modules and stave and petal structures.  
  Address [Allport, P. P.; Chisholm, A.; George, W.; Gonella, L.; Kopsalis, I.; Lomas, J.] Univ Birmingham, Sch Phys & Astron, Birmingham B152TT, England, Email: yoshinobu.unno@kek.jp  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000974242700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5522  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva