|   | 
Details
   web
Records
Author (down) Fonseca, R.M.; Hirsch, M.
Title A flipped 331 model Type Journal Article
Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 003 - 12pp
Keywords Beyond Standard Model; Gauge Symmetry; Neutrino Physics
Abstract Models based on the extended SU(3)(C) x SU(3)(L) x U(1)(X) (331) gauge group usually follow a common pattern: two families of left-handed quarks are placed in anti triplet representations of the SU(3)(L) group; the remaining quark family, as well as the left-handed leptons, are assigned to triplets (or vice-versa). In this work we present a flipped 331 model where this scheme is reversed: all three quark families are in the same representation and it is the lepton families which are discriminated by the gauge symmetry. We discuss fermion masses and mixing, as well as Z' interactions, in a minimal model implementing this idea.
Address [Fonseca, Renato M.; Hirsch, Martin] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cient Paterna,Calle Jose Beltran, E-46980 Paterna, Valencia, Spain, Email: renato.fonseca@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000381218300003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2782
Permanent link to this record
 

 
Author (down) Fonseca, R.M.; Grimus, W.
Title Classification of lepton mixing matrices from finite residual symmetries Type Journal Article
Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 09 Issue 9 Pages 033 - 54pp
Keywords Global Symmetries; Beyond Standard Model; Neutrino Physics
Abstract Assuming that neutrinos are Majorana particles, we perform a complete classification of all possible mixing matrices which are fully determined by residual symmetries in the charged-lepton and neutrino mass matrices. The classification is based on the assumption that the residual symmetries originate from a finite flavour symmetry group. The mathematical tools which allow us to accomplish this classification are theorems on sums of roots of unity. We find 17 sporadic cases plus one infinite series of mixing matrices associated with three-flavour mixing, all of which have already been discussed in the literature. Only the infinite series contains mixing matrices which are compatible with the data at the 3 sigma level.
Address [Fonseca, Renato M.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, E-46071 Valencia, Spain, Email: renato.fonseca@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000347898400002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2084
Permanent link to this record
 

 
Author (down) Folgado, M.G.; Gomez-Vargas, G.A.; Rius, N.; Ruiz de Austri, R.
Title Probing the sterile neutrino portal to Dark Matter with gamma rays Type Journal Article
Year 2018 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 08 Issue 8 Pages 002 - 20pp
Keywords dark matter theory; particle physics – cosmology connection; neutrino theory
Abstract Sterile neutrinos could provide a link between the Standard Model particles and a dark sector, besides generating active neutrino masses via the seesaw mechanism type I. We show that, if dark matter annihilation into sterile neutrinos determines its observed relic abundance, it is possible to explain the Galactic Center gamma-ray excess reported by the Fermi-LAT Collaboration as due to an astrophysical component plus dark matter annihilations. We observe that sterile neutrino portal to dark matter provides an impressively good fit, with a p-value of 0.78 in the best fit point, to the Galactic Center gamma-ray flux, for DM masses in the range (40-80) GeV and sterile neutrino masses 20 GeV less than or similar to M-N < M-DM. Such values are compatible with the limits from Fermi-LAT observations of the dwarfs spheroidal galaxies in the Milky Way halo, which rule out dark matter masses below similar to 50 GeV ( 90 GeV), for sterile neutrino masses M-N less than or similar to MDM ( M-N << M-DM). We also estimate the impact of AMS-02 anti-proton data on this scenario.
Address [Folgado, Miguel G.; Rius, Nuria; Ruiz de Austri, Roberto] Univ Valencia, CSIC, Dept Fis Teor, C-Catedratico Jose Beltran 2, E-46980 Paterna, Spain, Email: migarfol@ific.uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000440591500002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3681
Permanent link to this record
 

 
Author (down) Fiza, N.; Khan Chowdhury, N.R.; Masud, M.
Title Investigating Lorentz Invariance Violation with the long baseline experiment P2O Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages 076 - 29pp
Keywords Neutrino Mixing; Non-Standard Neutrino Properties
Abstract One of the basic propositions of quantum field theory is Lorentz invariance. The spontaneous breaking of Lorentz symmetry at a high energy scale can be studied at low energy extensions like the Standard model in a model-independent way through effective field theory (EFT). The present and future Long-baseline neutrino experiments can give a scope to observe such a Planck-suppressed physics of Lorentz invariance violation (LIV). A proposed long baseline experiment, Protvino to ORCA (dubbed “P2O”) with a baseline of 2595 km, is expected to provide good sensitivities to unresolved issues, especially neutrino mass ordering. P2O can offer good statistics even with a moderate beam power and runtime, owing to the very large (similar to 6 Mt) detector volume at KM3NeT/ ORCA. Here we discuss in detail, how the individual LIV parameters affect neutrino oscillations at P2O and DUNE baselines at the level of probability and derive analytical expressions to understand interesting degeneracies and other features. We estimate increment Delta chi(2) sensitivities to the LIV parameters, analyzing their correlations among each other, and also with the standard oscillation parameters. We calculate these results for P2O alone and also carry out a combined analysis of P2O with DUNE. We point out crucial features in the sensitivity contours and explain them qualitatively with the help of the relevant probability expressions derived here. Finally we estimate constraints on the individual LIV parameters at 95% confidence level (C.L.) intervals stemming from the combined analysis of P2O and DUNE datasets, and highlight the improvement over the existing constraints. We also find out that the additional degeneracy induced by the LIV parameter a(ee) around -22 x 10(-23) GeV is lifted by the combined analysis at 95% C.L.
Address [Fiza, Nishat] IISER Mohali, Dept Phys Sci, Mohali 140306, Punjab, India, Email: ph15039@iisermohali.ac.in;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000918348700001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5462
Permanent link to this record
 

 
Author (down) Fischer, O.; Pattnaik, B.; Zurita, J.
Title Testing Heavy Neutral Leptons in Cosmic Ray Beam Dump experiments Type Journal Article
Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 193 - 24pp
Keywords Cosmic Rays; Sterile or Heavy Neutrinos; New Light Particles
Abstract In this work, we discuss the possibility to test Heavy Neutral Leptons (HNLs) using “Cosmic Ray Beam Dump” experiments. In analogy with terrestrial beam dump experiments, where a beam first hits a target and is then absorbed by a shield, we consider high-energy incident cosmic rays impinging on the Earth's atmosphere and then the Earth's surface. We focus here on HNL production from atmospherically produced kaon, pion and D-meson decays, and discuss the possible explanation of the appearing Cherenkov showers observed by the SHALON Cherenkov telescope and the ultra-high energy events detected by the neutrino experiment ANITA. We show that these observations can not be explained with a long-lived HNL, as the relevant parameter space is excluded by existing constraints. Then we propose two new experimental setups that are inspired by these experiments, namely a Cherenkov telescope pointing at a sub-horizontal angle and shielded by the mountain cliff at Mount Thor, and a geostationary satellite that observes part of the Sahara desert. We show that the Cherenkov telescope at Mount Thor can probe currently untested HNL parameter space for masses below the kaon mass. We also show that the geostationary satellite experiment can significantly increase the HNL parameter space coverage in the whole mass range from 10 MeV up to 2 GeV and test neutrino mixing |U-& alpha;4|(2) down to 10(-11) for masses around 300 MeV.
Address [Fischer, Oliver] Univ Liverpool, Dept Math Sci, Liverpool L69 3BX, England, Email: Oliver.Fischer@liverpool.ac.uk;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001037689200008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5615
Permanent link to this record