|   | 
Details
   web
Records
Author (down) Bonnet, F.; Hirsch, M.; Ota, T.; Winter, W.
Title Systematic study of the d=5 Weinberg operator at one-loop order Type Journal Article
Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 153 - 23pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract We perform a systematic study of the d = 5 Weinberg operator at the one-loop level. We identify three different categories of neutrino mass generation: (1) finite irreducible diagrams; (2) finite extensions of the usual seesaw mechanisms at one-loop and (3) divergent loop realizations of the seesaws. All radiative one-loop neutrino mass models must fall in to one of these classes. Case (1) gives the leading contribution to neutrino mass naturally and a classic example of this class is the Zee model. We demonstrate that in order to prevent that a tree level contribution dominates in case (2), Majorana fermions running in the loop and an additional Z(2) symmetry are needed for a genuinely leading one-loop contribution. In the type-II loop extensions, the Yukawa coupling will be generated at one loop, whereas the type-I/III extensions can be interpreted as loop-induced inverse or linear seesaw mechanisms. For the divergent diagrams in category (3), the tree level contribution cannot be avoided and is in fact needed as counter term to absorb the divergence.
Address [Bonnet, Florian; Winter, Walter] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany, Email: florian.bonnet@physik.uni-wuerzburg.de;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000307299800031 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1159
Permanent link to this record
 

 
Author (down) Bonnet, F.; Hirsch, M.; Ota, T.; Winter, W.
Title Systematic decomposition of the neutrinoless double beta decay operator Type Journal Article
Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue 3 Pages 055 - 34pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract We discuss the systematic decomposition of the dimension nine neutrinoless double beta decay operator, focusing on mechanisms with potentially small contributions to neutrino mass, while being accessible at the LHC. We first provide a (d = 9 tree-level) complete list of diagrams for neutrinoless double beta decay. From this list one can easily recover all previously discussed contributions to the neutrinoless double beta decay process, such as the celebrated mass mechanism or “exotics”, such as contributions from left-right symmetric models, R-parity violating supersymmetry and leptoquarks. More interestingly, however, we identify a number of new possibilities which have not been discussed in the literature previously. Contact to earlier works based on a general Lorentz-invariant parametrisation of the neutrinoless double beta decay rate is made, which allows, in principle, to derive limits on all possible contributions. We furthermore discuss possible signals at the LHC for mediators leading to the short-range part of the amplitude with one specific example. The study of such contributions would gain particular importance if there were a tension between different measurements of neutrino mass such as coming from neutrinoless double beta decay and cosmology or single beta decay.
Address Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany, Email: florian.bonnet@physik.uni-wuerzburg.de;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000317521200055 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1416
Permanent link to this record
 

 
Author (down) Bonilla, J.; Brivio, I.; Gavela, M.B.; Sanz, V.
Title One-loop corrections to ALP couplings Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 11 Issue 11 Pages 168 - 57pp
Keywords Beyond Standard Model; Effective Field Theories; Renormalization Group
Abstract The plethora of increasingly precise experiments which hunt for axion-like particles (ALPs), as well as their widely different energy reach, call for the theoretical understanding of ALP couplings at loop-level. We derive the one-loop contributions to ALP-SM effective couplings, including finite corrections. The complete leading-order – dimension five – effective linear Lagrangian is considered. The ALP is left off-shell, which is of particular impact on LHC and accelerator searches of ALP couplings to gamma gamma, ZZ, WW, Z gamma gluons and fermions. All results are obtained in the covariant Rg gauge. A few phenomenological consequences are also explored as illustration, with flavour diagonal channels in the case of fermions: in particular, we explore constraints on the coupling of the ALP to top quarks, that can be extracted from LHC data, from astrophysical sources and from Dark Matter direct detection experiments such as PandaX, LUX and XENONIT. Furthermore, we clarify the relation between alternative ALP bases, the role of gauge anomalous couplings and their interface with chirality-conserving and chirality-flip fermion interactions, and we briefly discuss renormalization group aspects.
Address [Bonilla, J.; Gavela, M. B.] Univ Autonoma Madrid, Dept Fis Teor, E-28049 Madrid, Spain, Email: jesus.bonilla@ua.m.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000721914800006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5029
Permanent link to this record
 

 
Author (down) Bonilla, C.; Krauss, M.E.; Opferkuch, T.; Porod, W.
Title Perspectives for detecting lepton flavour violation in left-right symmetric models Type Journal Article
Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue 3 Pages 027 - 50pp
Keywords Beyond Standard Model; Neutrino Physics
Abstract We investigate lepton flavour violation in a class of minimal left-right symmetric models where the left-right symmetry is broken by triplet scalars. In this context we present a method to consistently calculate the triplet-Yukawa couplings which takes into account the experimental data while simultaneously respecting the underlying symmetries. Analysing various scenarios, we then calculate the full set of tree-level and one-loop contributions to all radiative and three-body flavour-violating fully leptonic decays as well as well as μ- e conversion in nuclei. Our method illustrates how these processes depend on the underlying parameters of the theory. To that end we observe that, for many choices of the model parameters, there is a strong complementarity between the different observables. For instance, in a large part of the parameter space, lepton flavour violating T-decays have a large enough branching ratio to be measured in upcoming experiments. Our results further show that experiments coming online in the immediate future, like Mu3e and BELLE II, or longer-term, such as PRISM/PRIME, will probe significant portions of the currently allowed parameter space.
Address [Bonilla, Cesar] Univ Valencia, Inst Fis Corpuscular, CSIC, AHEP Grp, Edificio Inst Paterna, E-46980 Paterna, Valencia, Spain, Email: cesar.bonilla@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000397669900009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3027
Permanent link to this record
 

 
Author (down) Bloch, I.M.; Caputo, A.; Essig, R.; Redigolo, D.; Sholapurkar, M.; Volansky, T.
Title Exploring new physics with O(keV) electron recoils in direct detection experiments Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages 178 - 63pp
Keywords Beyond Standard Model; Cosmology of Theories beyond the SM
Abstract Motivated by the recent XENON1T results, we explore various new physics models that can be discovered through searches for electron recoils in O(keV)-threshold direct-detection experiments. First, we consider the absorption of axion-like particles, dark photons, and scalars, either as dark matter relics or being produced directly in the Sun. In the latter case, we find that keV mass bosons produced in the Sun provide an adequate fit to the data but are excluded by stellar cooling constraints. We address this tension by introducing a novel Chameleon-like axion model, which can explain the excess while evading the stellar bounds. We find that absorption of bosonic dark matter provides a viable explanation for the excess only if the dark matter is a dark photon or an axion. In the latter case, photophobic axion couplings are necessary to avoid X-ray constraints. Second, we analyze models of dark matter-electron scattering to determine which models might explain the excess. Standard scattering of dark matter with electrons is generically in conflict with data from lower-threshold experiments. Momentum-dependent interactions with a heavy mediator can fit the data with dark matter mass heavier than a GeV but are generically in tension with collider constraints. Next, we consider dark matter consisting of two (or more) states that have a small mass splitting. The exothermic (down)scattering of the heavier state to the lighter state can fit the data for keV mass splittings. Finally, we consider a subcomponent of dark matter that is accelerated by scattering off cosmic rays, finding that dark matter interacting though an O(100 keV)-mass mediator can fit the data. The cross sections required in this scenario are, however, typically challenged by complementary probes of the light mediator. Throughout our study, we implement an unbinned Monte Carlo analysis and use an improved energy reconstruction of the XENON1T events.
Address [Bloch, Itay M.; Volansky, Tomer] Tel Aviv Univ, Sch Phys & Astron, IL-69978 Tel Aviv, Israel, Email: itay.bloch.m@gmail.com;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000616257000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4713
Permanent link to this record