Perez-Vidal, R. M. et al, Gadea, A., Jurado, M., Domingo-Pardo, C., & Huyuk, T. (2022). Evidence of Partial Seniority Conservation in the pi g9/2 Shell for the N=50 Isotones. Phys. Rev. Lett., 129(11), 112501–7pp.
Abstract: The reduced transition probabilities for the 4+1 -2+1 and 2+1 -0+1 transitions in 92Mo and 94Ru and for the 4+1 -2+1 and 6+1 -4+1 transitions in 90Zr have been determined in this experiment making use of a multinucleon transfer reaction. These results have been interpreted on the basis of realistic shell-model calculations in the f5=2, p3=2, p1=2, and g9=2 proton valence space. Only the combination of extensive lifetime information and large scale shell-model calculations allowed the extent of the seniority conservation in the N = 50 g9=2 orbital to be understood. The conclusion is that seniority is largely conserved in the first 71g9=2 orbital.
|
Perez-Vidal, R. M., Galtarossa, F., Mijatovic, T., Szilner, S., Zanon, I., Brugnara, D., et al. (2023). Nuclear structure advancements with multi-nucleon transfer reactions. Eur. Phys. J. A, 59(5), 114–15pp.
Abstract: Multi-Nucleon Transfer (MNT) reactions have been used for decades as a reaction mechanism, in order to populate excited states in nuclei far from stability and to perform nuclear structure studies. Nevertheless, the development of set-ups involving high acceptance tracking magnetic spectrometers (mainly existing in Europe), coupled with the Advanced GAmma Tracking Array (AGATA) opens new possibilities, especially if they are used in conjunction with high-intensity stable beams or ISOL RIBs. In this article, we will discuss the capabilities of such set-ups aiming at different goals, including complete information in high-resolution spectroscopy as well as lifetime measurements.
|
Pilotto, E., Ferrer, F. J., Akhmadaliev, S., Fernandez, A., Gadea, A., Gomez Camacho, J., et al. (2025). Comparing 3He content in magnetron sputtered and implanted targets for nuclear studies. Eur. Phys. J. A, 61(5), 117–8pp.
Abstract: He-3 targets are a valuable tool in nuclear physics, particularly for studying nuclear structure and dynamics via direct reactions in inverse kinematics. However, they are often prone to degradation under intense beam irradiation and have insufficient He-3 content for use with lowintensity exotic beams. In a recent AGATA experiment at LNL, designed to study the astrophysically relevant lifetime of a O-15 excited state, two types of He-3 targets were tested. One was produced using ion implantation and the other with a novel magnetron sputtering technique, in both cases on Au substrates. Following irradiation with a stable O-16 beam, they were characterized using Nuclear Reaction Analysis (NRA) and Elastic Recoil Detection Analysis (ERDA). Results demonstrated that, under the here used fabrication conditions, sputtered targets present a higher He-3 content, while implanted ones exhibit thinner profiles. This highlights the possibilities and complementarity of these targets, suggesting their tailored use for future experimental campaigns.
|
PreSPEC and AGATA Collaborations(Ralet, D. et al), Domingo-Pardo, C., Gadea, A., & Huyuk, T. (2017). Lifetime measurement of neutron-rich even-even molybdenum isotopes. Phys. Rev. C, 95(3), 034320–11pp.
Abstract: Background: In the neutron-rich A approximate to 100 mass region, rapid shape changes as a function of nucleon number as well as coexistence of prolate, oblate, and triaxial shapes are predicted by various theoretical models. Lifetime measurements of excited levels in the molybdenum isotopes allow the determination of transitional quadrupole moments, which in turn provides structural information regarding the predicted shape change. Purpose: The present paper reports on the experimental setup, the method that allowed one to measure the lifetimes of excited states in even-even molybdenum isotopes from mass A = 100 up to mass A = 108, and the results that were obtained. Method: The isotopes of interest were populated by secondary knock-out reaction of neutron-rich nuclei separated and identified by the GSI fragment separator at relativistic beam energies and detected by the sensitive PreSPEC-AGATA experimental setup. The latter included the Lund-York-Cologne calorimeter for identification, tracking, and velocity measurement of ejectiles, and AGATA, an array of position sensitive segmented HPGe detectors, used to determine the interaction positions of the gamma ray enabling a precise Doppler correction. The lifetimes were determined with a relativistic version of the Doppler-shift-attenuation method using the systematic shift of the energy after Doppler correction of a gamma-ray transition with a known energy. This relativistic Doppler-shift-attenuation method allowed the determination of mean lifetimes from 2 to 250 ps. Results: Even-even molybdenum isotopes from mass A = 100 to A = 108 were studied. The decays of the low-lying states in the ground-state band were observed. In particular, two mean lifetimes were measured for the first time: tau = 29.7(-9.1)(+11.3) ps for the 4(+) state of Mo-108 and tau = 3.2(-0.7)(+ 0.7) ps for the 6(+) state of Mo-102. Conclusions: The reduced transition strengths B(E2), calculated from lifetimes measured in this experiment, compared to beyond-mean-field calculations, indicate a gradual shape transition in the chain of molybdenum isotopes when going from A = 100 to A = 108 with a maximum reached at N = 64. The transition probabilities decrease for Mo-108 which may be related to its well-pronounced triaxial shape indicated by the calculations.
|
PreSPEC and AGATA Collaborations(Ralet, D. et al), & Gadea, A. (2015). Data-flow coupling and data-acquisition triggers for the PreSPEC-AGATA campaign at GSI. Nucl. Instrum. Methods Phys. Res. A, 786, 32–39.
Abstract: The PreSPEC setup for high-resolution 'gamma-ray spectroscopy using radioactive ion beams was employed for experimental campaigns in 2012 and 2014. The setup consisted of the state of the art Advanced GAmma Tracking Array (AGATA) and the High Energy gamma cleteCTOR (HECTOR+) positioned around a secondary target at the final focal plane of the GSI FRagment Separator (FRS) to perform in-beam gamma-ray spectroscopy of exotic nuclei. The Lund York Cologne CAlorimeter (LYCCA) was used to identify the reaction products. In this paper we report on the trigger scheme used during the campaigns. The dataflow coupling between the Multi-Branch System (MBS) based Data AcQuisition (DAQ) used for FRS-LYCCA and the “Nouvelle Acquisition temps Reel Version 1.2 Avec Linux” (NARVAL) based acquisition system used for AGATA are also described.
|