NEXT Collaboration(Renner, J. et al), Alvarez, V., Carcel, S., Cervera-Villanueva, A., Diaz, J., Ferrario, P., et al. (2015). Ionization and scintillation of nuclear recoils in gaseous xenon. Nucl. Instrum. Methods Phys. Res. A, 793, 62–74.
Abstract: Ionization and scintillation produced by nuclear recoils in gaseous xenon at approximately 14 bar have been simultaneously observed in an electroluminescent time projection chamber. Neutrons from radioisotope a-Be neutron sources were used to induce xenon nuclear recoils, and the observed recoil spectra were compared to a detailed Monte Carlo employing estimated ionization and scintillation yields for nuclear recoils. The ability to discriminate between electronic and nuclear recoils using the ratio of ionization to primary scintillation is demonstrated. These results encourage further investigation on the use of xenon in the gas phase as a detector medium in dark matter direct detection experiments.
|
NEXT Collaboration(Trindade, A. M. F. et al), Alvarez, V., Benlloch-Rodriguez, J. M., Botas, A., Carcel, S., Carrion, J. V., et al. (2018). Study of the loss of xenon scintillation in xenon-trimethylamine mixtures. Nucl. Instrum. Methods Phys. Res. A, 905, 22–28.
Abstract: This work investigates the capability of TMA ((CH3)(3)N) molecules to shift the wavelength of Xe VUV emission (160-188 nm) to a longer, more manageable, wavelength (260-350 nm). Light emitted from a Xe lamp was passed through a gas chamber filled with Xe-TMA mixtures at 800 Torr and detected with a photomultiplier tube. Using bandpass filters in the proper transmission ranges, no reemitted light was observed experimentally. Considering the detection limit of the experimental system, if reemission by TMA molecules occurs, it is below 0.3% of the scintillation absorbed in the 160-188 nm range. An absorption coefficient value for xenon VUV light by TMA of 0.43 +/- 0.03 cm(-1) Torr(-1) was also obtained. These results can be especially important for experiments considering TMA as a molecular additive to Xe in large volume optical time projection chambers.
|
n_TOF Collaboration(Bacak, M. et al), Domingo-Pardo, C., & Tain, J. L. (2020). A compact fission detector for fission-tagging neutron capture experiments with radioactive fissile isotopes. Nucl. Instrum. Methods Phys. Res. A, 969, 163981–10pp.
Abstract: In the measurement of neutron capture cross-sections of fissile isotopes, the fission channel is a source of background which can be removed efficiently using the so-called fission-tagging or fission-veto technique. For this purpose a new compact and fast fission chamber has been developed. The design criteria and technical description of the chamber are given within the context of a measurement of the U-233(n, gamma) cross-section at the nTOF facility at CERN, where it was coupled to the nTOF Total Absorption Calorimeter. For this measurement the fission detector was optimized for time resolution, minimization of material in the neutron beam and for alpha-fission discrimination. The performance of the fission chamber and its application as a fission tagging detector are discussed.
|
n_TOF Collaboration(Balibrea-Correa, J. et al), Lerendegui-Marco, J., Domingo-Pardo, C., Ladarescu, I., Tarifeño-Saldivia, A., de la Fuente-Rosales, G., et al. (2025). Towards a new generation of solid total-energy detectors for neutron-capture time-of-flight experiments with intense neutron beams. Nucl. Instrum. Methods Phys. Res. A, 1072, 170110–14pp.
Abstract: Challenging neutron-capture cross-section measurements of small cross sections and samples with a very limited number of atoms require high-flux time-of-flight facilities. In turn, such facilities need innovative detection setups that are fast, have low sensitivity to neutrons, can quickly recover from the so-called. gamma-flash, and offer the highest possible detection sensitivity. In this paper, we present several steps towards such advanced systems. Specifically, we describe the performance of a high-sensitivity experimental setupat CERN n_TOF EAR2. It consists of nine sTED detector modules in a compact cylindrical configuration, two conventional used large-volume C6D6 detectors, and one LaCl3(Ce) detector. The performance of these detection systems is compared using Nb-93(n, gamma) data. We also developed a detailed GEANT4 Monte Carlo model of the experimental EAR2 setup, which allows for a better understanding of the detector features, including their efficiency determination. This Monte Carlo model has been used for further optimization, thus leading to a new conceptual design of a gamma detector array, STAR, based on a deuterated-stilbene crystal array. Finally, the suitability of deuterated-stilbene crystals for the future STAR array is investigated experimentally utilizing a small stilbene-d12 prototype. The results suggest a similar or superior performance of STAR with respect to other setups based on liquid-scintillators, and allow for additional features such as neutron-gamma discrimination and a higher level of customization capability.
|
n_TOF Collaboration(Barbagallo, M. et al), Domingo-Pardo, C., & Tain, J. L. (2018). Experimental setup and procedure for the measurement of the Be-7(n,p)Li-7 reaction at n_TOF. Nucl. Instrum. Methods Phys. Res. A, 887, 27–33.
Abstract: Following the completion of the second neutron beam line and the related experimental area (EAR2) at the n_TOF spallation neutron source at CERN, several experiments were planned and performed. The high instantaneous neutron flux available in EAR2 allows to investigate neutron induced reactions with charged particles in the exit channel even employing targets made out of small amounts of short-lived radioactive isotopes. After the successful measurement of the Be-7(n,alpha)alpha cross section, the Be-7(n,p)Li-7 reaction was studied in order to provide still missing cross section data of relevance for Big Bang Nucleosynthesis (BBN), in an attempt to find a solution to the cosmological Lithium abundance problem. This paper describes the experimental setup employed in such a measurement and its characterization.
|