|   | 
Details
   web
Records
Author (up) Binosi, D.; Papavassiliou, J.
Title Gauge invariant Ansatz for a special three-gluon vertex Type Journal Article
Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue 3 Pages 121 - 23pp
Keywords Nonperturbative Effects; QCD
Abstract We construct a general Ansatz for the three-particle vertex describing the interaction of one background and two quantum gluons, by simultaneously solving the Ward and Slavnov-Taylor identities it satisfies. This vertex is known to be essential for the gauge-invariant truncation of the Schwinger-Dyson equations of QCD, based on the pinch technique and the background field method. A key step in this construction is the formal derivation of a set of crucial constraints (shown to be valid to all orders), relating the various form factors of the ghost Green's functions appearing in the aforementioned Slavnov-Taylor identity. When inserted into the Schwinger-Dyson equation for the gluon propagator, this vertex gives rise to a number of highly non-trivial cancellations, which are absolutely indispensable for the self-consistency of the entire approach.
Address [Binosi, D.] European Ctr Theoret Studies Nucl Phys & Related, I-38123 Villazzano, TN, Italy, Email: binosi@ect.it
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes ISI:000289295300049 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 624
Permanent link to this record
 

 
Author (up) Blennow, M.; Dasgupta, B.; Fernandez-Martinez, E.; Rius, N.
Title Aidnogenesis via leptogenesis and dark sphalerons Type Journal Article
Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 03 Issue 3 Pages 014 - 14pp
Keywords Cosmology of Theories beyond the SM; Beyond Standard Model; Neutrino Physics
Abstract We discuss aidnogenesis,(1) i.e. the generation of a dark matter asymmetry, via new sphaleron processes associated to an extra non-abelian gauge symmetry common to both the visible and the dark sectors. Such a theory can naturally produce an abundance of asymmetric dark matter which is of the same size as the lepton and baryon asymmetries, as suggested by the similar sizes of the observed baryonic and dark matter energy content, and provide a definite prediction for the mass of the dark matter particle. We discuss in detail a minimal realization in which the Standard Model is only extended by dark matter fermions which form “dark baryons” through an SU(3) interaction, and a (broken) horizontal symmetry that induces the new sphalerons. The dark matter mass is predicted to be similar to 6GeV, close to the region favored by DAMA and CoGeNT. Furthermore, a remnant of the horizontal symmetry should be broken at a lower scale and can also explain the Tevatron dimuon anomaly.
Address [Blennow, Mattias; Fernandez-Martinez, Enrique] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, D-80805 Munich, Germany, Email: blennow@mppmu.mpg.de
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes ISI:000289295200014 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 611
Permanent link to this record
 

 
Author (up) Bodenstein, S.; Bordes, J.; Dominguez, C.A.; Peñarrocha, J.; Schilcher, K.
Title QCD sum rule determination of the charm-quark mass Type Journal Article
Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 83 Issue 7 Pages 074014 - 4pp
Keywords
Abstract QCD sum rules involving mixed inverse moment integration kernels are used in order to determine the running charm-quark mass in the (MS) over bar scheme. Both the high and the low energy expansion of the vector current correlator are involved in this determination. The optimal integration kernel turns out to be of the form p(s) = 1 -(s(0)/s)(2), where s(0) is the onset of perturbative QCD. This kernel enhances the contribution of the well known narrow resonances, and reduces the impact of the data in the range s similar or equal to 20-25 GeV2. This feature leads to a substantial reduction in the sensitivity of the results to changes in s(0), as well as to a much reduced impact of the experimental uncertainties in the higher resonance region. The value obtained for the charm-quark mass in the (MS) over bar scheme at a scale of 3 GeV is (m) over bar (c)(3 GeV) = 987 +/- 9 MeV, where the error includes all sources of uncertainties added in quadrature.
Address [Bodenstein, S.; Dominguez, C. A.] Univ Cape Town, Ctr Theoret & Math Phys, ZA-7700 Rondebosch, South Africa
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes ISI:000289519700002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 604
Permanent link to this record
 

 
Author (up) Boito, D.; Cata, O.; Golterman, M.; Jamin, M.; Maltman, K.; Osborne, J.; Peris, S.
Title New determination of alpha(s) from hadronic tau decays Type Journal Article
Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 84 Issue 11 Pages 113006 - 19pp
Keywords
Abstract We present a new framework for the extraction of the strong coupling from hadronic tau decays through finite-energy sum rules. Our focus is on the small, but still significant nonperturbative effects that, in principle, affect both the central value and the systematic error. We employ a quantitative model in order to accommodate violations of quark-hadron duality, and enforce a consistent treatment of the higher-dimensional contributions of the operator product expansion to our sum rules. Using 1998 OPAL data for the nonstrange isovector vector and axial-vector spectral functions, we find the n(f) = 3 values alpha(s)(m(tau)(2)) = 0.307 +/- 0.019 in fixed-order perturbation theory, and 0.322 +/- 0.026 in contour-improved perturbation theory. For comparison, the original OPAL analysis of the same data led to the values 0.324 +/- 0.014 (fixed order) and 0.348 +/- 0.021 (contour improved).
Address [Boito, Diogo] Univ Autonoma Barcelona, Dept Fis, E-08193 Barcelona, Spain
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-7998 ISBN Medium
Area Expedition Conference
Notes WOS:000298131000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 847
Permanent link to this record
 

 
Author (up) Borexino Collaboration (Bellini, G. et al); Pena-Garay, C.
Title Precision Measurement of the (7)Be Solar Neutrino Interaction Rate in Borexino Type Journal Article
Year 2011 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.
Volume 107 Issue 14 Pages 141302 - 5pp
Keywords
Abstract The rate of neutrino-electron elastic scattering interactions from 862 keV (7)Be solar neutrinos in Borexino is determined to be 46.0 +/- 1.5(stat)(-1.6)(+1.5)(syst)counts/(day . 100 ton). This corresponds to a nu(e)-equivalent (7)Be solar neutrino flux of (3.10 +/- 0.15) x 10(9) cm(-2) s(-1) and, under the assumption of nu(e) transition to other active neutrino flavours, yields an electron neutrino survival probability of 0.51 +/- 0.07 at 862 keV. The no flavor change hypothesis is ruled out at 5.0 sigma. A global solar neutrino analysis with free fluxes determines Phi(pp) = 6.06(-0.66)(+0.02) x 10(10) cm(-2) s(-1) and Phi(CNO) < 1.3 x 10(9) cm(-2) s(-1) (95% C.L.). These results significantly improve the precision with which the Mikheyev-Smirnov-Wolfenstein large mixing angle neutrino oscillation model is experimentally tested at low energy.
Address [Bellini, G; Bonetti, S; Avanzini, MB; Caccianiga, B; D'Angelo, D; Giammarchi, M; Ludhova, L; Meroni, E; Miramonti, L; Perasso, L; Ranucci, G; Re, A] Univ Studi & INFN, Dipartimento Fis, I-20133 Milan, Italy
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9007 ISBN Medium
Area Expedition Conference
Notes WOS:000296285800007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 793
Permanent link to this record