|   | 
Details
   web
Records
Author (up) Gelmini, G.B.; Takhistov, V.; Witte, S.J.
Title Casting a wide signal net with future direct dark matter detection experiments Type Journal Article
Year 2018 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 07 Issue 7 Pages 009 - 55pp
Keywords dark matter detectors; dark matter experiments; dark matter theory
Abstract As dark matter (DM) direct detection experiments continue to improve their sensitivity they will inevitably encounter an irreducible background arising from coherent neutrino scattering. This so-called “neutrino floor” may significantly reduce the sensitivity of an experiment to DM-nuclei interactions, particularly if the recoil spectrum of the neutrino background is approximately degenerate with the DM signal. This occurs for the conventionally considered spin-independent (SI) or spin-dependent (SD) interactions. In such case, an increase in the experiment's exposure by multiple orders of magnitude may not yield any significant increase in sensitivity. The typically considered SI and SD interactions, however, do not adequately reflect the whole landscape of the well-motivated DM models, which includes other interactions. Since particle DM has not been detected yet in laboratories, it is essential to understand and maximize the detection capabilities for a broad variety of possible models and signatures. In this work we explore the impact of the background arising from various neutrino sources on the discovery potential of a DM signal for a large class of viable DM-nucleus interactions and several potential futuristic experimental settings, with different target elements. For some momentum suppressed cross sections, large DM particle masses and heavier targets, we find that there is no suppression of the discovery limits due to neutrino backgrounds. Further, we explicitly demonstrate that inelastic scattering, which could appear in models with multicomponent dark sectors, would help to lift the signal degeneracy associated with the neutrino floor. This study could assist with mapping out the optimal DM detection strategy for the next generation of experiments.
Address [Gelmini, Graciela B.; Takhistov, Volodymyr; Witte, Samuel J.] Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA, Email: gelmini@physics.ucla.edu;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000437422800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3646
Permanent link to this record
 

 
Author (up) Gololo, M.G.D.; Carrio Argos, F.; Mellado, B.
Title Tile Computer-on-Module for the ATLAS Tile Calorimeter Phase-II upgrades Type Journal Article
Year 2022 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 17 Issue 6 Pages P06020 - 14pp
Keywords Control and monitor systems online; Detector control systems (detector and experiment monitoring and slow-control systems, architecture, hardware, algorithms, databases); Data acquisition circuits; Digital electronic circuits
Abstract The Tile PreProcessor (TilePPr) is the core element of the Tile Calorimeter (TileCal) off-detector electronics for High-luminosity Large Hadron Collider (HL-LHC). The TilePPr comprises FPGA-based boards to operate and read out the TileCal on-detector electronics. The Tile Computer on Module (TileCoM) mezzanine is embedded within TilePPr to carry out three main functionalities. These include remote configuration of on-detector electronics and TilePPr FPGAs, interface the TilePPr with the ATLAS Trigger and Data Acquisition (TDAQ) system, and interfacing the TilePPr with the ATLAS Detector Control System (DCS) by providing monitoring data. The TileCoM is a 10-layer board with a Zynq UltraScale+ ZU2CG for processing data, interface components to integrate with TilePPr and the power supply to be connected to the Advanced Telecommunication Computing Architecture carrier. A CentOS embedded Linux is deployed on the TileCoM to implement the required functionalities for the HL-LHC. In this paper we present the hardware and firmware developments of the TileCoM system in terms of remote programming, interface with ATLAS TDAQ system and DCS system.
Address [Gololo, M. G. D.; Argos, F. Carrio; Mellado, B.] Univ Witwatersrand, Inst Collider Particle Phys, 1 Jan Smuts Ave, ZA-2000 Johannesburg, South Africa, Email: mpho.gift.doctor.gololo@cern.ch
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000836448900004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5335
Permanent link to this record
 

 
Author (up) Gomez-Cadenas, J.J.; Benlloch-Rodriguez, J.M.; Ferrario, P.
Title Monte Carlo study of the coincidence resolving time of a liquid xenon PET scanner, using Cherenkov radiation Type Journal Article
Year 2017 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 12 Issue Pages P08023 - 13pp
Keywords Cherenkov and transition radiation; Gamma camera; SPECT; PET PET/CT; coronary CT angiography (CTA); Noble liquid detectors (scintillation, ionization, double-phase); Photon detectors for UV; visible and IR photons (solid-state) (PIN diodes, APDs, Si-PMTs, G-APDs, CCDs, EBCCDs, EMCCDs etc)
Abstract In this paper we use detailed Monte Carlo simulations to demonstrate that liquid xenon (LXe) can be used to build a Cherenkov-based TOF-PET, with an intrinsic coincidence resolving time (CRT) in the vicinity of 10 ps. This extraordinary performance is due to three facts: a) the abundant emission of Cherenkov photons by liquid xenon; b) the fact that LXe is transparent to Cherenkov light; and c) the fact that the fastest photons in LXe have wavelengths higher than 300 nm, therefore making it possible to separate the detection of scintillation and Cherenkov light. The CRT in a Cherenkov LXe TOF-PET detector is, therefore, dominated by the resolution (time jitter) introduced by the photosensors and the electronics. However, we show that for sufficiently fast photosensors (e.g, an overall 40 ps jitter, which can be achieved by current micro-channel plate photomultipliers) the overall CRT varies between 30 and 55 ps, depending on the detection efficiency. This is still one order of magnitude better than commercial CRT devices and improves by a factor 3 the best CRT obtained with small laboratory prototypes.
Address [Ferrario, P.] CSIC, Inst Fis Corpuscular IFIC, Calle Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: paola.ferrario@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000414160300006 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3347
Permanent link to this record
 

 
Author (up) Gomez-Cadenas, J.J.; Benlloch-Rodriguez, J.M.; Ferrario, P.; Monrabal, F.; Rodriguez, J.; Toledo, J.F.
Title Investigation of the coincidence resolving time performance of a PET scanner based on liquid xenon: a Monte Carlo study Type Journal Article
Year 2016 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 11 Issue Pages P09011 - 18pp
Keywords Gamma camera; SPECT; PET PET/CT; coronary CT angiography (CTA); Instrumentation and methods for time-of-flight (TOF) spectroscopy; Noble liquid detectors (scintillation ionization, double-phase); Scintillators; scintillation and light emission processes (solid, gas and liquid scintillators)
Abstract The measurement of the time of flight of the two 511 keV gammas recorded in coincidence in a PET scanner provides an effective way of reducing the random background and therefore increases the scanner sensitivity, provided that the coincidence resolving time (CRT) of the gammas is sufficiently good. The best commercial PET-TOF system today (based in LYSO crystals and digital SiPMs), is the VEREOS of Philips, boasting a CRT of 316 ps (FWHM). In this paper we present a Monte Carlo investigation of the CRT performance of a PET scanner exploiting the scintillating properties of liquid xenon. We find that an excellent CRT of 70 ps (depending on the PDE of the sensor) can be obtained if the scanner is instrumented with silicon photomultipliers (SiPMs) sensitive to the ultraviolet light emitted by xenon. Alternatively, a CRT of 160 ps can be obtained instrumenting the scanner with (much cheaper) blue-sensitive SiPMs coated with a suitable wavelength shifter. These results show the excellent time of flight capabilities of a PET device based in liquid xenon.
Address [Gomez-Cadenas, J. J.; Benlloch-Rodriguez, J. M.; Ferrario, P.; Rodriguez, J.] CSIC, Inst Fis Corpuscular IFIC, Calle Catedrat Jose Beltran 2, Valencia 46980, Spain, Email: paola.ferrario@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000387862300011 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2866
Permanent link to this record
 

 
Author (up) Gonzalez-Sevilla, S. et al; Bernabeu Verdu, J.; Civera, J.V.; Garcia, C.; Lacasta, C.; Marco, R.; Marti-Garcia, S.; Santoyo, D.; Soldevila, U.
Title A double-sided silicon micro-strip Super-Module for the ATLAS Inner Detector upgrade in the High-Luminosity LHC Type Journal Article
Year 2014 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 9 Issue Pages P02003 - 37pp
Keywords Particle tracking detectors; Si microstrip and pad detectors; Performance of High Energy Physics Detectors
Abstract The ATLAS experiment is a general purpose detector aiming to fully exploit the discovery potential of the Large Hadron Collider (LHC) at CERN. It is foreseen that after several years of successful data-taking, the LHC physics programme will be extended in the so-called High-Luminosity LHC, where the instantaneous luminosity will be increased up to 5 x 10(34) cm(-2) s(-1). For ATLAS, an upgrade scenario will imply the complete replacement of its internal tracker, as the existing detector will not provide the required performance due to the cumulated radiation damage and the increase in the detector occupancy. The current baseline layout for the new ATLAS tracker is an all-silicon-based detector, with pixel sensors in the inner layers and silicon micro-strip detectors at intermediate and outer radii. The super-module is an integration concept proposed for the strip region of the future ATLAS tracker, where double-sided stereo silicon micro-strip modules are assembled into a low-mass local support structure. An electrical super-module prototype for eight double-sided strip modules has been constructed. The aim is to exercise the multi-module readout chain and to investigate the noise performance of such a system. In this paper, the main components of the current super-module prototype are described and its electrical performance is presented in detail.
Address [Gonzalez-Sevilla, S.; Barbier, G.; Cadoux, F.; Clark, A.; Favre, Y.; Ferrere, D.; Iacobucci, G.; La Marra, D.; Weber, M.] DPNC Univ Geneva, Geneva, Switzerland, Email: rgio.Gonzalez.Sevilla@cern.ch
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000332314400038 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1749
Permanent link to this record