Sekihara, T., & Oset, E. (2015). Investigating the nature of light scalar mesons with semileptonic decays of D mesons. Phys. Rev. D, 92(5), 054038–17pp.
Abstract: We study the semileptonic decays of D-s(+), D+, and D-0 mesons into the light scalar mesons [f(0)(500), K-0(*)(800), f(0)(980), and a(0)(980)] and the light vector mesons [rho(770), omega(782), K-*(892), and phi(1020)]. With the help of a chiral unitarity approach in coupled channels, we compute the branching fractions for scalar meson processes of the semileptonic D decays in a simple way. Using current known values of the branching fractions, we make predictions for the branching fractions of the semileptonic decay modes with other scalar and vector mesons. Furthermore, we calculate the pi(+)pi(-), pi eta, pi K, and K+K- invariant mass distributions in the semileptonic decays of D mesons, which will help us clarify the nature of the light scalar mesons.
|
Segarra, A., & Bernabeu, J. (2020). Absolute neutrino mass and the Dirac/Majorana distinction from the weak interaction of aggregate matter. Phys. Rev. D, 101(9), 093004–6pp.
Abstract: The 2 nu-mediated force has a range of microns, well beyond the atomic scale. The effective potential is built from the t-channel absorptive part of the scattering amplitude and depends on neutrino properties on shell. We demonstrate that neutral aggregate matter has a weak charge and calculate the matrix of six coherent charges for its interaction with definite-mass neutrinos. Near the range of the potential the neutrino pair is nonrelativistic, leading to observable absolute mass and Dirac/Majorana distinction via different r-dependence and violation of the weak equivalence principle.
|
SciBooNE Collaboration(Nakajima, Y. et al), Catala-Perez, J., Gomez-Cadenas, J. J., & Sorel, M. (2011). Measurement of inclusive charged current interactions on carbon in a few-GeV neutrino beam. Phys. Rev. D, 83(1), 012005–21pp.
Abstract: We report a measurement of inclusive charged current interactions of muon neutrinos on carbon with an average energy of 0.8 GeV using the Fermilab Booster Neutrino Beam. We compare our measurement with two neutrino interaction simulations: NEUT and NUANCE. The charged current interaction rates (product of flux and cross section) are extracted by fitting the muon kinematics, with a precision of 6%-15% for the energy dependent and 3% for the energy integrated analyses. We also extract charged current inclusive interaction cross sections from the observed rates, with a precision of 10%-30% for the energy dependent and 8% for the energy integrated analyses. This is the first measurement of the charged current inclusive cross section on carbon around 1 GeV. These results can be used to convert previous SciBooNE cross-section ratio measurements to absolute cross-section values.
|
SciBooNE Collaboration(Kurimoto, Y. et al), Catala-Perez, J., Gomez-Cadenas, J. J., & Sorel, M. (2010). Improved measurement of neutral current coherent pi(0) production on carbon in a few-GeV neutrino beam. Phys. Rev. D, 81(11), 111102–6pp.
Abstract: The SciBooNE Collaboration reports a measurement of neutral current coherent pi(0) production on carbon by a muon neutrino beam with average energy 0.8 GeV. The separation of coherent from inclusive pi(0) production has been improved by detecting recoil protons from resonant pi(0) production. We measure the ratio of the neutral current coherent pi(0) production to total charged current cross sections to be 1.16 +/- 0.24) x 10(-2). The ratio of charged current coherent pi(+) to neutral current coherent pi(0) production is calculated to be 0.14(-0.28)(+0.30), using our published charged current coherent pion measurement.
|
SciBooNE Collaboration(Kurimoto, Y. et al), Catala-Perez, J., Gomez-Cadenas, J. J., & Sorel, M. (2010). Measurement of inclusive neutral current pi(0) production on carbon in a few-GeV neutrino beam. Phys. Rev. D, 81(3), 033004–18pp.
Abstract: The SciBooNE Collaboration reports inclusive neutral current neutral pion production by a muon neutrino beam on a polystyrene target (C8H8). We obtain (7.7 +/- 0.5(stat) +/- 0.5(sys)) X 10(-2) as the ratio of the neutral current neutral pion production to total charged current cross section; the mean energy of neutrinos producing detected neutral pions is 1.1 GeV. The result agrees with the Rein-Sehgal model implemented in our neutrino interaction simulation program with nuclear effects. The spectrum shape of the pi(0) momentum and angle agree with the model. We also measure the ratio of the neutral current coherent pion production to total charged current cross section to be (0.7 +/- 0.4) X 10(-2).
|