|   | 
Details
   web
Records
Author (down) Fernandez Navarro, M.; King, S.F.; Vicente, A.
Title Tri-unification: a separate SU(5) for each fermion family Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 05 Issue 5 Pages 130 - 32pp
Keywords Grand Unification; Theories of Flavour
Abstract In this paper we discuss SU(5)3 with cyclic symmetry as a possible grand unified theory (GUT). The basic idea of such a tri-unification is that there is a separate SU(5) for each fermion family, with the light Higgs doublet(s) arising from the third family SU(5), providing a basis for charged fermion mass hierarchies. SU(5)3 tri-unification reconciles the idea of gauge non-universality with the idea of gauge coupling unification, opening the possibility to build consistent non-universal descriptions of Nature that are valid all the way up to the scale of grand unification. As a concrete example, we propose a grand unified embedding of the tri-hypercharge model \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\text{U}}{\left(1\right)}_{Y}<^>{3}$$\end{document} based on an SU(5)3 framework with cyclic symmetry. We discuss a minimal tri-hypercharge example which can account for all the quark and lepton (including neutrino) masses and mixing parameters. We show that it is possible to unify the many gauge couplings into a single gauge coupling associated with the cyclic SU(5)3 gauge group, by assuming minimal multiplet splitting, together with a set of relatively light colour octet scalars. We also study proton decay in this example, and present the predictions for the proton lifetime in the dominant e+pi 0 channel.
Address [Navarro, Mario Fernandez; King, Stephen F.] Univ Southampton, Sch Phys & Astron, Southampton SO17 1BJ, England, Email: Mario.FernandezNavarro@glasgow.ac.uk;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001256025400004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6171
Permanent link to this record
 

 
Author (down) Feijoo, A.; Dai, L.R.; Abreu, L.M.; Oset, E.
Title Correlation function for the Tbb state: Determination of the binding, scattering lengths, effective ranges, and molecular probabilities Type Journal Article
Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 109 Issue 1 Pages 016014 - 8pp
Keywords
Abstract We perform a study of the (B*+B0), (BB+)-B-*0 correlation functions using an extension of the local hidden gauge approach which provides the interaction from the exchange of light vector mesons and gives rise to a bound state of these components in I = 0 with a binding energy of about 21 MeV. After that, we face the inverse problem of determining the low energy observables, scattering length and effective range for each channel, the possible existence of a bound state, and, if found, the couplings of such a state to each (B*+B0), (BB+)-B-*0 component as well as the molecular probabilities of each of the channels. We use the bootstrap method to determine these magnitudes and find that, with errors in the correlation function typical of present experiments, we can determine all these magnitudes with acceptable precision. In addition, the size of the source function of the experiment from where the correlation functions are measured can be also determined with a high precision.
Address [Feijoo, A.; Dai, L. R.; Oset, E.] Univ Valencia, Inst Invest Paterna, Dept Fis Teor, Ctr Mixto,CSIC, Aptdo 22085, Valencia 46071, Spain, Email: edfeijoo@ific.uv.es;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001172361900005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6078
Permanent link to this record
 

 
Author (down) Falkowski, A.; Gonzalez-Alonso, M.; Palavric, A.; Rodriguez-Sanchez, A.
Title Constraints on subleading interactions in beta decay Lagrangian Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 02 Issue 2 Pages 091 - 54pp
Keywords Effective Field Theories; Hadronic Matrix Elements and Weak Decays; Effective Field Theories of QCD; SMEFT
Abstract We discuss the effective field theory (EFT) for nuclear beta decay. The general quark-level EFT describing charged-current interactions between quarks and leptons is matched to the nucleon-level non-relativistic EFT at the OMeV momentum scale characteristic for beta transitions. The matching takes into account, for the first time, the effect of all possible beyond-the-Standard-Model interactions at the subleading order in the recoil momentum. We calculate the impact of all the Wilson coefficients of the leading and subleading EFT Lagrangian on the differential decay width in allowed beta transitions. As an example application, we show how the existing experimental data constrain the subleading Wilson coefficients corresponding to pseudoscalar, weak magnetism, and induced tensor interactions. The data display a 3.5 sigma evidence for nucleon weak magnetism, in agreement with the theory prediction based on isospin symmetry.
Address [Falkowski, Adam; Rodriguez-Sanchez, Antonio] Univ Paris Saclay, IJCLab, CNRS, IN2P3, F-91405 Orsay, France, Email: adam.falkowski@ijclab.in2p3.fr;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001163170700004 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5966
Permanent link to this record
 

 
Author (down) Fajfer, S.; Solomonidi, E.; Vale Silva, L.
Title S-wave contribution to rare D0 → π+ π- l+ l- decays in the standard model and sensitivity to new physics Type Journal Article
Year 2024 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 109 Issue 3 Pages 036027 - 24pp
Keywords
Abstract Physics of the up-type flavor offers unique possibilities of testing the standard model (SM) compared to the down-type flavor sector. Here, we discuss SM and new physics (NP) contributions to the rare charmmeson decay D0 -> x+x- l+l-. In particular, we discuss the effect of including the lightest scalar isoscalar resonance in the SM picture, namely, the f0(500), which manifests in a big portion of the allowed phase space. Other than showing in the total branching ratio at an observable level of about 20%, the f0(500) resonance manifests as interference terms with the vector resonances, such as at high invariant mass of the leptonic pair in distinct angular observables. Recent data from LHCb optimize the sensitivity to P-wave contributions that we analyze in view of the inclusion of vector resonances. We propose the measurement of alternative observables that are sensitive to the S-wave and are straightforward to implement experimentally. This leads to a new set of null observables that vanish in the SM due to its gauge and flavor structures. Finally, we study observables that depend on the SM interference with generic NP contributions from semileptonic four-fermion operators in the presence of the S-wave.
Address [Fajfer, Svjetlana] Jozef Stefan Inst, Jamova 39,POB 3000, Ljubljana 1001, Slovenia
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001181678500001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5991
Permanent link to this record
 

 
Author (down) Escrihuela, F.J.; Flores, L.J.; Miranda, O.G.; Rendon, J.; Sanchez-Velez, R.
Title Examining the sensitivity of FASERν to generalized neutrino interactions Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages 102 - 25pp
Keywords Non-Standard Neutrino Properties; Neutrino Interactions; Electroweak Precision Physics
Abstract We investigate the sensitivity of the FASER nu detector, a novel experimental setup at the LHC, to probe and constrain generalized neutrino interactions (GNI). Employing a comprehensive theoretical framework, we model the effects of generalized neutrino interactions on neutrino-nucleon deep inelastic scattering processes within the FASER nu detector. By considering all the neutrino channels produced at the LHC, we perform a statistical analysis to determine the sensitivity of FASER nu to constrain these interactions. Our results demonstrate that FASER nu can place stringent constraints on the GNI effective couplings. Additionally, we study the relation between GNI and a minimal Leptoquark model where the SM is augmented by a singlet Leptoquark with hypercharge 1/3. We have found that the sensitivities for various combinations of the Leptoquark Yukawa couplings are approximately O(1), particularly when considering a Leptoquark mass in the TeV range.
Address [Escrihuela, F. J.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, Parc Cientif Paterna,C Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: franesfe@alumni.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001255987500005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6176
Permanent link to this record