toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Albertus, C.; Hernandez, E.; Nieves, J. url  doi
openurl 
  Title Exclusive c -> s, d Semileptonic Decays of Spin-1/2 and Spin-3/2 cb Baryons Type Journal Article
  Year 2014 Publication Few-Body Systems Abbreviated Journal Few-Body Syst.  
  Volume 55 Issue 8-10 Pages 767-771  
  Keywords  
  Abstract We present results for exclusive semileptonic decay widths of ground state spin-1/2 and spin-3/2 cb baryons corresponding to a c -> s, d transition at the quark level. The relevance of hyperfine mixing in spin-1/2 cb baryons is shown. Our form factors are compatible with heavy quark spin symmetry constraints obtained in the infinite heavy quark mass limit.  
  Address [Albertus, C.] Univ Granada, Fac Ciencias, Dept Fis Atom Mol & Nucl, E-18071 Granada, Spain, Email: albertus@ugr.es;  
  Corporate Author Thesis  
  Publisher Springer Wien Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0177-7963 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000339828900036 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1865  
Permanent link to this record
 

 
Author (down) Albertus, C.; Hernandez, E.; Hidalgo-Duque, C.; Nieves, J. url  doi
openurl 
  Title (B)over-bar(s) -> K semileptonic decay from an Omnes improved constituent quark model Type Journal Article
  Year 2014 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 738 Issue Pages 144-149  
  Keywords  
  Abstract We study the f(+) form factor for the semileptonic (B) over bar (s) -> K+ l(-) (V) over bar (l) decay in a constituent quark model. The valence quark estimate is supplemented with the contribution from the (B) over bar* pole that dominates the high q(2) region. We use a multiply-subtracted Omnes dispersion relation to extend the quark model predictions from its region of applicability near q(max)(2) = (M-Bs – M-K)(2) similar to 23.75 GeV2 to all q(2) values accessible in the physical decay. To better constrain the dependence of f(+) on q(2), we fit the subtraction constants to a combined input from previous light cone sum rule by Duplancic and Melic (2008) [11] and the present quark model results. From this analysis, we obtain Gamma ( (B) over bar (s) -> K+ l(-) (V) over bar (l)) = (5.47(-0.46)(+0.54)) vertical bar Vub vertical bar(2) x 10(-9) MeV, which is about 10% and 20% higher than the predictions based on Lattice QCD and QCD light cone sum rules respectively. The former predictions, for both the form factor f(+) (q(2)) and the differential decay width, lie within the 1 sigma band of our estimated uncertainties for all q(2) values accessible in the physical decay, except for a quite small region very close to q(max)(2). Differences with the light cone sum results for the form factor f(+) are larger than 20% in the region above q(2) = 15 GeV2.  
  Address [Albertus, C.] Univ Granada, Dept Fis Atom Nucl & Mol, E-18071 Granada, Spain  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000344624900022 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2020  
Permanent link to this record
 

 
Author (down) Albaladejo, M.; Nieves, J.; Tolos, L. url  doi
openurl 
  Title D(D)over-bar* scattering and chi(c1) (3872) in nuclear matter Type Journal Article
  Year 2021 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 104 Issue 3 Pages 035203 - 20pp  
  Keywords  
  Abstract We study the behavior of the chi(c1) (3872), also known as X(3872), in dense nuclear matter. We begin from a picture in vacuum of the X(3872) as a purely molecular (D (D) over bar*-c.c.) state, generated as a bound state from a heavy-quark symmetry leading-order interaction between the charmed mesons, and analyze the D (D) over bar* scattering T matrix (T-D (D) over bar*) inside of the medium. Next, we consider also mixed-molecular scenarios and, in all cases, we determine the corresponding X(3872) spectral function and the D (D) over bar* amplitude, with the mesons embedded in the dense environment. We find important nuclear corrections for T-D (D) over bar* and the pole position of the resonance, and discuss the dependence of these results on the D (D) over bar* molecular component in the X(3872) wave function. These predictions could be tested in the finite-density regime that can be accessed in the future CBM and PANDA experiments at the Facility for Antiproton and Ion Research (FAIR).  
  Address [Albaladejo, M.] Thomas Jefferson Natl Accelerator Facil, Theory Ctr, Newport News, VA 23606 USA  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000704558000004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4999  
Permanent link to this record
 

 
Author (down) Albaladejo, M.; Nieves, J.; Ruiz Arriola, E. url  doi
openurl 
  Title Femtoscopic signatures of the lightest S-wave scalar open-charm mesons Type Journal Article
  Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 108 Issue Pages 014020 - 7pp  
  Keywords  
  Abstract We predict femtoscopy correlation functions for S-wave D(s)ϕ pairs of lightest pseudoscalar open-charm mesons and Goldstone bosons from next-to-leading-order unitarized heavy-meson chiral perturbation theory amplitudes. The effect of the two-state structure around 2300 MeV can be clearly seen in the (S,I)=(0,1/2) Dπ, Dη, and Ds¯K correlation functions, while in the scalar-strange (1,0) sector, the D∗s0(2317)± state lying below the DK threshold produces a depletion of the correlation function near threshold. These exotic states owe their existence to the nonperturbative dynamics of Goldstone-boson scattering off D(s). The predicted correlation functions could be experimentally measured and will shed light into the hadron spectrum, confirming that it should be viewed as more than a collection of quark model states.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 6089  
Permanent link to this record
 

 
Author (down) Albaladejo, M.; Nieves, J.; Oset, E.; Sun, Z.F.; Liu, X. url  doi
openurl 
  Title Can X(5568) be described as a B-s pi, B(K)over-bar resonant state? Type Journal Article
  Year 2016 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 757 Issue Pages 515-519  
  Keywords  
  Abstract The DO Collaboration has recently seen a resonant-like peak in the B-s pi invariant mass spectrum, claimed to be a new state called X(5568). Using a B-s pi-B (K) over bar coupled channel analysis, implementing unitarity, and with the interaction derived from Heavy Meson Chiral Perturbation Theory, we are able to reproduce the reported spectrum, with a pole that can be associated to the claimed X(5568) state, and with mass and width in agreement with the ones reported in the experimental analysis. However, if the T-matrix regularization is performed by means of a momentum cutoff, the value for the latter needed to reproduce the spectrum is Lambda = 2.80 +/- 0.04 GeV, which is much larger than a “natural” value Lambda similar or equal to 1 GeV. In view of this, it is difficult to interpret the nature of this new state. This state would not qualify as a resonance dynamically generated by the unitarity loops. Assuming the observed peak to correspond to a physical state, we make predictions for partners in the D, D*, and B* sectors. Their observation (or lack thereof) would shed light into this issue.  
  Address [Albaladejo, Miguel; Nieves, Juan; Oset, Eulogio; Sun, Zhi-Feng] Univ Valencia, CSIC, Inst Invest Paterna, Inst Fis Corpuscular IFIC,Ctr Mixto, Aptd 22085, E-46071 Valencia, Spain, Email: Miguel.Albaladejo@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000376800300072 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2698  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva