toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) n_TOF Collaboration (Mingrone, F. et al); Domingo-Pardo, C.; Giubrone, G.; Tain, J.L. url  doi
openurl 
  Title Neutron capture cross section measurement of U-238 at the CERN n_TOF facility in the energy region from 1 eV to 700 keV Type Journal Article
  Year 2017 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 95 Issue 3 Pages 034604 - 14pp  
  Keywords  
  Abstract The aim of this work is to provide a precise and accurate measurement of the U-238(n,gamma) reaction cross section in the energy region from 1 eV to 700 keV. This reaction is of fundamental importance for the design calculations of nuclear reactors, governing the behavior of the reactor core. In particular, fast reactors, which are experiencing a growing interest for their ability to burn radioactive waste, operate in the high energy region of the neutron spectrum. In this energy region most recent evaluations disagree due to inconsistencies in the existing measurements of up to 15%. In addition, the assessment of nuclear data uncertainty performed for innovative reactor systems shows that the uncertainty in the radiative capture cross section of U-238 should be further reduced to 1-3% in the energy region from 20 eV to 25 keV. To this purpose, addressed by the Nuclear Energy Agency as a priority nuclear data need, complementary experiments, one at the GELINA and two at the nTOF facility, were proposed and carried out within the 7th Framework Project ANDES of the European Commission. The results of one of these U-238(n, gamma) measurements performed at the nTOF CERN facility are presented in this work. The gamma-ray cascade following the radiative neutron capture has been detected exploiting a setup of two C6D6 liquid scintillators. Resonance parameters obtained from this work are on average in excellent agreement with the ones reported in evaluated libraries. In the unresolved resonance region, this work yields a cross section in agreement with evaluated libraries up to 80 keV, while for higher energies our results are significantly higher.  
  Address [Mingrone, F.; Berthoumieux, E.; Brugger, M.; Calviani, M.; Cerutti, F.; Chiaveri, E.; Chin, M.; Guerrero, C.; Hernandez-Prieto, A.; Kadi, Y.; Losito, R.; Rubbia, C.; Tsinganis, A.; Vlachoudis, V.] CERN, European Org Nucl Res, Geneva, Switzerland, Email: federica.mingrone@cern.ch  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000396022500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3030  
Permanent link to this record
 

 
Author (down) n_TOF Collaboration (Michalopoulou, V. et al); Babiano-Suarez, V.; Caballero, L.; Domingo-Pardo, C.; Ladarescu, I.; Tain, J.L. doi  openurl
  Title Measurement of the neutron-induced fission cross section of Th-230 at the CERN n_TOF facility Type Journal Article
  Year 2023 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 108 Issue 1 Pages 014616 - 15pp  
  Keywords  
  Abstract The neutron-induced fission cross section of Th-230 has been measured at the neutron time-of-flight facility n_TOF located at CERN. The experiment was performed at the experimental area EAR-1 with a neutron flight path of 185 m, using Micromegas detectors for the detection of the fission fragments. The Th-230(n, f ) cross section was determined relative to the U-235(n, f ) one, covering the energy range from the fission threshold up to 400 MeV. The results from the present work are compared with existing cross-section datasets and the observed discrepancies are discussed and analyzed. Finally, using the code EMPIRE 3.2.3 a theoretical study, based on the statistical model, was performed leading to a satisfactory reproduction of the experimental results with the proper tuning of the respective parameters, while for incident neutron energy beyond 200 MeV the fission of( 230)Th was described by Monte Carlo simulations.  
  Address [Michalopoulou, V; Stamatopoulos, A.; Diakaki, M.; Vlastou, R.; Kokkoris, M.; Tassan-Got, L.] Natl Tech Univ Athens, Dept Phys, Zografou Campus, Athens, Greece, Email: veatriki.michalopoulou@cern.ch  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001063908000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5700  
Permanent link to this record
 

 
Author (down) n_TOF Collaboration (Mendoza, E. et al); Giubrone, G.; Tain, J.L.; Tarifeño-Saldivia, A. doi  openurl
  Title Measurement and analysis of the Am-241 neutron capture cross section at the n_TOF facility at CERN Type Journal Article
  Year 2018 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 97 Issue 5 Pages 054616 - 21pp  
  Keywords  
  Abstract The Am-241(n, gamma) cross section has been measured at the nTOF facility at CERN with the nTOF BaF2 Total Absorption Calorimeter in the energy range between 0.2 eV and 10 keV. Our results are analyzed as resolved resonances up to 700 eV, allowing a more detailed description of the cross section than in the current evaluations, which contain resolved resonances only up to 150-160 eV. The cross section in the unresolved resonance region is perfectly consistent with the predictions based on the average resonance parameters deduced from the resolved resonances, thus obtaining a consistent description of the cross section in the full neutron energy range under study. Below 20 eV, our results are in reasonable agreement with JEFF-3.2 as well as with the most recent direct measurements of the resonance integral, and differ up to 20-30% with other experimental data. Between 20 eV and 1 keV, the disagreement with other experimental data and evaluations gradually decreases, in general, with the neutron energy. Above 1 keV, we find compatible results with previously existing values.  
  Address [Mendoza, E.; Cano-Ott, D.; Balibrea, J.; Becares, V; Garcia, A. R.; Gonzalez, E.; Lopez, D.; Martinez, T.] Ctr Invest Energet Medioambientales & Tecnol CIEM, Madrid, Spain, Email: emilio.mendoza@ciemat.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000433032300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3584  
Permanent link to this record
 

 
Author (down) n_TOF Collaboration (Mendoza, E. et al); Domingo-Pardo, C.; Tain, J.L. doi  openurl
  Title Measurement and analysis of the Am-243 neutron capture cross section at the n_TOF facility at CERN Type Journal Article
  Year 2014 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 90 Issue 3 Pages 034608 - 16pp  
  Keywords  
  Abstract Background: The design of new nuclear reactors and transmutation devices requires to reduce the present neutron cross section uncertainties of minor actinides. Purpose: Improvement of the Am-243(n, gamma) cross section uncertainty. Method: The Am-243(n, gamma) cross section has been measured at the n_TOF facility at CERN with a BaF2 total absorption calorimeter, in the energy range between 0.7 eV and 2.5 keV. Results: The Am-243(n, gamma) cross section has been successfully measured in the mentioned energy range. The resolved resonance region has been extended from 250 eV up to 400 eV. In the unresolved resonance region our results are compatible with one of the two incompatible capture data sets available below 2.5 keV. The data available in EXFOR and in the literature have been used to perform a simple analysis above 2.5 keV. Conclusions: The results of this measurement contribute to reduce the Am-243(n, gamma) cross section uncertainty and suggest that this cross section is underestimated up to 25% in the neutron energy range between 50 eV and a few keV in the present evaluated data libraries.  
  Address [Mendoza, E.; Cano-Ott, D.; Guerrero, C.; Alvarez-Velarde, F.; Balibrea, J.; Gonzalez-Romero, E.; Martinez, T.; Villamarin, D.; Vicente, M. C.] CIEMAT, E-28040 Madrid, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0556-2813 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000341912100005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1935  
Permanent link to this record
 

 
Author (down) n_TOF Collaboration (Massimi, C. et al); Domingo-Pardo, C.; Tain, J.L. doi  openurl
  Title Au-197(n,gamma) cross section in the resonance region Type Journal Article
  Year 2010 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 81 Issue 4 Pages 044616 - 22pp  
  Keywords  
  Abstract The (n,gamma) cross section of Au-197 has been measured at nTOF in the resolved resonance region, up to 5 keV, with the aim of improving the accuracy in an energy range where it is not yet considered standard. The measurements were performed with two different experimental setup and detection techniques, the total energy method based on C6D6 detectors, and the total absorption calorimetry based on a 4 pi BaF2 array. By comparing the data collected with the two techniques, two accurate sets of neutron-capture yields have been obtained, which could be the basis for a new evaluation leading to an extended cross-section standard. Overall good agreement is found between the n_TOF results and evaluated cross sections, with some significant exceptions for small resonances. A few resonances not included in the existing databases have also been observed.  
  Address [Domingo-Pardo, C.] GSI Helmholtzzentrum Schwerionenforsch GmbH, Darmstadt, Germany, Email: c.domingopardo@gsi.de  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0556-2813 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000277209500051 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 463  
Permanent link to this record
 

 
Author (down) n_TOF Collaboration (Massimi, C. et al); Domingo-Pardo, C.; Tain, J.L. doi  openurl
  Title Resonance neutron-capture cross sections of stable magnesium isotopes and their astrophysical implications Type Journal Article
  Year 2012 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 85 Issue 4 Pages 044615 - 15pp  
  Keywords  
  Abstract We have measured the neutron capture cross sections of the stable magnesium isotopes Mg-24,Mg-25,Mg-26 in the energy range of interest to the s process using the neutron time-of-flight facility n_TOF at CERN. Capture events from a natural metal sample and from samples enriched in Mg-25 and Mg-26 were recorded using the total energy method based on (C6H6)-H-2 detectors. Neutron resonance parameters were extracted by a simultaneous resonance shape analysis of the present capture data and existing transmission data on a natural isotopic sample. Maxwellian-averaged capture cross sections for the three isotopes were calculated up to thermal energies of 100 keV and their impact on s-process analyses was investigated. At 30 keV the new values of the stellar cross section for Mg-24, Mg-25, and Mg-26 are 3.8 +/- 0.2 mb, 4.1 +/- 0.6 mb, and 0.14 +/- 0.01 mb, respectively.  
  Address [Massimi, C.; Vannini, G.] Univ Bologna, Dipartimento Fis, Bologna, Italy, Email: Cristian.Massimi@bo.infn.it  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0556-2813 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000303069400003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 994  
Permanent link to this record
 

 
Author (down) n_TOF Collaboration (Lerendegui-Marco, J. et al.); Domingo-Pardo, C.; Tain, J.L.; Tarifeño-Saldivia, A. doi  openurl
  Title Radiative neutron capture on Pu-242 in the resonance region at the CERN n_TOF-EAR1 facility Type Journal Article
  Year 2018 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 97 Issue 2 Pages 024605 - 21pp  
  Keywords  
  Abstract The spent fuel of current nuclear reactors contains fissile plutonium isotopes that can be combined with uranium to make mixed oxide (MOX) fuel. In this way the Pu from spent fuel is used in a new reactor cycle, contributing to the long-term sustainability of nuclear energy. However, an extensive use of MOX fuels, in particular in fast reactors, requires more accurate capture and fission cross sections for some Pu isotopes. In the case of Pu-242 there are sizable discrepancies among the existing capture cross-section measurements included in the evaluations (all from the 1970s) resulting in an uncertainty as high as 35% in the fast energy region. Moreover, postirradiation experiments evaluated with JEFF-3.1 indicate an overestimation of 14% in the capture cross section in the fast neutron energy region. In this context, the Nuclear Energy Agency (NEA) requested an accuracy of 8% in this cross section in the energy region between 500 meV and 500 keV. This paper presents a new time-of-flight capture measurement on Pu-242 carried out at nTOF-EAR1 (CERN), focusing on the analysis and statistical properties of the resonance region, below 4 keV. The Pu-242(n, gamma) reaction on a sample containing 95(4) mg enriched to 99.959% was measured with an array of four C6D6 detectors and applying the total energy detection technique. The high neutron energy resolution of nTOF-EAR1 and the good statistics accumulated have allowed us to extend the resonance analysis up to 4 keV, obtaining new individual and average resonance parameters from a capture cross section featuring a systematic uncertainty of 5%, fulfilling the request of the NEA.  
  Address [Lerendegui-Marco, J.; Guerrero, C.; Quesada, J. M.; Cortes-Giraldo, M. A.; Praena, J.; Sabate-Gilarte, M.] Univ Seville, Dept Fis Atom Mol & Nucl, E-41012 Seville, Spain, Email: cguerrero4@us.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000424190700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3474  
Permanent link to this record
 

 
Author (down) n_TOF Collaboration (Lederer-Woods, C. et al.); Domingo-Pardo, C.; Tain, J.L. doi  openurl
  Title Destruction of the cosmic gamma-ray emitter Al-26 in massive stars: Study of the key Al-26(n, p) reaction Type Journal Article
  Year 2021 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 104 Issue 2 Pages L022803 - 7pp  
  Keywords  
  Abstract The Al-26(n, p) Mg-26 reaction is the key reaction impacting on the abundances of the cosmic gamma-ray emitter Al-26 produced in massive stars and impacts on the potential pollution of the early solar system with Al-26 by asymptotic giant branch stars. We performed a measurement of the Al-26(n, p) Mg-26 cross section at the high-flux beam line EAR-2 at the n_TOF facility (CERN). We report resonance strengths for eleven resonances, nine being measured for the first time, while there is only one previous measurement for the other two. Our resonance strengths are significantly lower than the only previous values available. Our cross-section data range to 150 keV neutron energy, which is sufficient for a reliable determination of astrophysical reactivities up to 0.5 GK stellar temperature.  
  Address [Lederer-Woods, C.; Woods, P. J.; Davinson, T.; Kahl, D.; Lonsdale, S. J.] Univ Edinburgh, Sch Phys & Astron, Peter Guthrie Tait Rd, Edinburgh EH9 3FD, Midlothian, Scotland, Email: claudia.lederer-woods@ed.ac.uk  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000691442700005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4949  
Permanent link to this record
 

 
Author (down) n_TOF Collaboration (Lederer-Woods, C. et al.); Domingo-Pardo, C.; Tain, J.L. doi  openurl
  Title Destruction of the cosmic gamma-ray emitter Al-26 in massive stars: Study of the key Al-26(n, alpha) reaction Type Journal Article
  Year 2021 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 104 Issue 3 Pages L032803 - 6pp  
  Keywords  
  Abstract Neutron destruction reactions of the cosmic gamma-ray emitter Al-26 are of importance to determine the amount of Al-26 ejected into our galaxy by supernova explosions and for Al-26 production in asymptotic giant branch stars. We performed a new measurement of the Al-26(n, alpha) reaction up to 160-keV neutron energy at the neutron time-of-flight facilities n_TOF at CERN and GELINA at EC-JRC. We provide strengths for ten resonances, six of them for the first time. We use our data to calculate astrophysical reactivities for stellar temperatures up to 0.7 GK. Our results resolve a discrepancy between the two previous direct measurements of this reaction, and indicate higher stellar destruction rates than the most recently recommended reactivity.  
  Address [Lederer-Woods, C.; Woods, P. J.; Davinson, T.; Estrade, A.; Kahl, D.; Lonsdale, S. J.] Univ Edinburgh, Sch Phys & Astron, Peter Guthrie Tait Rd, Edinburgh EH9 3FD, Midlothian, Scotland, Email: claudia.lederer-woods@ed.ac.uk  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000704560300002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4988  
Permanent link to this record
 

 
Author (down) n_TOF Collaboration (Lederer, C. et al.); Giubrone, G.; Tain, J.L. url  doi
openurl 
  Title Ni-62(n,gamma) and Ni-63(n,gamma) cross sections measured at the n_TOF facility at CERN Type Journal Article
  Year 2014 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 89 Issue 2 Pages 025810 - 11pp  
  Keywords  
  Abstract The cross section of the Ni-62(n,gamma) reaction was measured with the time-of-flight technique at the neutron time-of-flight facility nTOF at CERN. Capture kernels of 42 resonances were analyzed up to 200 keV neutron energy and Maxwellian averaged cross sections (MACS) from kT = 5-100 keV were calculated. With a total uncertainty of 4.5%, the stellar cross section is in excellent agreement with the the KADoNiS compilation at kT = 30 keV, while being systematically lower up to a factor of 1.6 at higher stellar temperatures. The cross section of the Ni-63(n,gamma) reaction was measured for the first time at nTOF. We determined unresolved cross sections from 10 to 270 keV with a systematic uncertainty of 17%. These results provide fundamental constraints on s-process production of heavier species, especially the production of Cu in massive stars, which serve as the dominant source of Cu in the solar system.  
  Address [Lederer, C.; Wallner, A.; Pavlik, A.] Univ Vienna, Fac Phys, A-1010 Vienna, Austria, Email: claudia.lederer@ph.ed.uk  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0556-2813 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000332175500012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1717  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva