Geng, L. S., Guo, F. K., Hanhart, C., Molina, R., Oset, E., & Zou, B. S. (2010). Study of the f(2)(1270) , f(2)'(1525) , f(0)(1370) and f(0)(1710) in the J/psi radiative decays. Eur. Phys. J. A, 44(2), 305–311.
Abstract: In this paper we present an approach to study the radiative decay modes of the J/psi into a photon and one of the tensor mesons f (2)(1270) , f' (2)(1525) , as well as the scalar ones f (0)(1370) and f (0)(1710) . Especially, we compare predictions that emerge from a scheme where the states appear dynamically in the solution of vector meson-vector meson scattering amplitudes to those from a (admittedly naive) quark model. We provide evidence that it might be possible to distinguish amongst the two scenarios, once improved data are available.
|
Geng, L. S., Molina, R., & Oset, E. (2017). On the chiral covariant approach to rho rho scattering. Chin. Phys. C, 41(12), 124101–9pp.
Abstract: We examine in detail a recent work (D. Gulmez, U. G. Meibner and J. A. Oller, Eur. Phys. J. C, 77: 460 (2017)), where improvements to make rho rho scattering relativistically covariant are made. The paper has the remarkable conclusion that the J=2 state disappears with a potential which is much more attractive than for J=0, where a bound state is found. We trace this abnormal conclusion to the fact that an “on-shell” factorization of the potential is done in a region where this potential is singular and develops a large discontinuous and unphysical imaginary part. A method is developed, evaluating the loops with full rho propagators, and we show that they do not develop singularities and do not have an imaginary part below threshold. With this result for the loops we define an effective potential, which when used with the Bethe-Salpeter equation provides a state with J=2 around the energy of the f(2)(1270). In addition, the coupling of the state to is evaluated and we find that this coupling and the T matrix around the energy of the bound state are remarkably similar to those obtained with a drastic approximation used previously, in which the q(2) terms of the propagators of the exchanged rho mesons are dropped, once the cut-off in the rho rho loop function is tuned to reproduce the bound state at the same energy.
|
Geng, L. S., & Oset, E. (2016). Novel nonperturbative approach for radiative (B)over-bar(0)((B)over-bar(s)(0)) -> J/psi gamma decays. Phys. Rev. D, 94(1), 014018–11pp.
Abstract: Radiative (B) over bar (0)((B) over bar (0)(s)) -> J/psi gamma decays provide an interesting case to test our understanding of ( non) perturbative QCD and eventually to probe physics beyond the standard model. Recently, the LHCb Collaboration reported an upper bound, updating the results of the BABAR Collaboration. Previous theoretical predictions based on QCD factorization or perturbative QCD have shown large variations due to different treatment of nonfactorizable contributions and meson-photon transitions. In this paper, we report on a novel approach to estimate the decay rates, which is based on a recently proposed model for B decays and the vector meson dominance hypothesis, widely tested in the relevant energy regions. The predicted branching ratios are Br[(B) over bar (0) -> J/psi gamma] = (3.50 +/- 0.34(-0.63)(+1.12)) x 10(-8) and Br[(B) over bar (0)(s) -> J/psi gamma] = (7.20 +/- 0.68(-1.30)(+2.31)) x 10(-7). The first uncertainty is systematic and the second is statistical, originating from the experimental (B) over bar (0)(s) -> J/psi gamma branching ratio.
|
Geng, L. S., Ren, X. L., Zhou, Y., Chen, H. X., & Oset, E. (2015). S-wave KK* interactions in a finite volume and the f(1)(1285). Phys. Rev. D, 92(1), 014029–9pp.
Abstract: Lattice QCD simulations provide a promising way to disentangle different interpretations of hadronic resonances, which might be of particular relevance to understand the nature of the so-called XYZ particles. Recent studies have shown that in addition to the well-established naive quark model picture, the axial-vector meson f(1)(1285) can also be understood as a dynamically generated state built upon the KK* interaction. In this work, we calculate the energy levels of the KK* system in the f(1)(1285) channel in finite volume using the chiral unitary approach. We propose to calculate the loop function in the dimensional regularization scheme, which is equivalent to the hybrid approach adopted in previous studies. We also study the inverse problem of extracting the bound state information from synthetic lattice QCD data and comment on the difference between our approach and the Luscher method.
|
Ikeno, N., Bayar, M., & Oset, E. (2018). Semileptonic decay of B-c(-) into X (3930), X (3940), X (4160). Eur. Phys. J. C, 78(5), 429–7pp.
Abstract: We study the semileptonic decay of B-c(-) meson into & Unknown;l(-) and the isospin zero X (3930) (2(++)), X(3940) (0(++)), X (4160) (2(++)) resonances. We look at the reaction from the perspective that these resonaces appear as dynamically generated from the vector-vector interaction in the charm sector, and couple strongly to D*& Unknown;D* and D-s*& Unknown;D-s*. We also look into the B-c(-) -> & Unknown;(l)l(-) D*& Unknown;* and B-c(-) -> & Unknown;(l)l(-) D-s*& Unknown;(s)* reactions close to threshold and relate the D*& Unknown;* and D-s*& Unknown;(s)* mass distribution to the rate of production of the X resonances.
|