toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Kulikov, I.; Algora, A.; Atanasov, D.; Ascher, P.; Blaum, K.; Cakirli, R.B.; Herlert, A.; Huang, W.J.; Karthein, J.; Litvinov, Y.A.; Lunney, D.; Manea, V.; Mougeot, M.; Schweikhard, L.; Welker, A.; Wienholtz, F. doi  openurl
  Title Masses of short-lived Sc-49, Sc-50, As-70, Br-73 and stable Hg-196 nuclides Type Journal Article
  Year 2020 Publication Nuclear Physics A Abbreviated Journal Nucl. Phys. A  
  Volume 1002 Issue Pages 121990 - 15pp  
  Keywords ISOLTRAP; Mass measurements; Atomic mass evaluation; Multi-reflection time-of-flight; Penning trap mass spectrometry  
  Abstract Mass measurements of Sc-49,Sc-50, As-70, Br-73 and Hg-196 nuclides produced at CERN's radioactive-ion beam facility ISOLDE are presented. The measurements were performed at the ISOLTRAP mass spectrometer by use of the multi-reflection time-of-flight and the Penning-trap mass spectrometry techniques. The new results agree well with previously known literature values. The mass accuracy for all cases has been improved.  
  Address [Kulikov, I; Litvinov, Yu A.] GSI Helmholtzzentrum Schwerionenforsch GmbH, Planckstr 1, D-64291 Darmstadt, Germany, Email: ivan.kulikov@cern.ch  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0375-9474 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000567817300004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4528  
Permanent link to this record
 

 
Author (down) Korichi, A.; Lauritsen, T.; Wilson, A.N.; Dudouet, J.; Clement, E.; Lalovic, N.; Perez-Vidal, R.M.; Pietri, S.; Ralet, D.; Stezowski, O. doi  openurl
  Title Performance of a gamma-ray tracking array: Characterizing the AGATA array using a Co-60 source Type Journal Article
  Year 2017 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 872 Issue Pages 80-86  
  Keywords Segmented germanium detectors; Efficiency measurements; gamma-ray tracking; AGATA; gamma-ray spectroscopy; Nuclear structure  
  Abstract The AGATA (Advanced GAmma Tracking Array) tracking detector is being designed to far surpass the performance of the previous generation, Compton-suppressed arrays. In this paper, a characterization of AGATA is provided based on data from the second GSI campaign. Emphasis is placed on the proper corrections required to extract the absolute photopeak efficiency and peak-to-total ratio. The performance after tracking is extracted and GEANT4 simulations are used both to understand the results and to scale the measurements up to predicted values for the full 4 pi implementation of the device.  
  Address [Korichi, A.] CNRS, IN2P3, CSNSM, Bat 104-108,Orsay Campus, F-91405 Orsay, France, Email: Amel.Korichi@csnsm.in2p3.fr  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000411755300009 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3311  
Permanent link to this record
 

 
Author (down) Goasduff, A.; Valiente-Dobon, J.J.; Lunardi, S.; Haas, F.; Gadea, A.; de Angelis, G.; Bazzacco, D.; Courtin, S.; Farnea, E.; Gottardo, A.; Michelagnoli, C.; Mengoni, D.; Napoli, D.R.; Recchia, F.; Sahin, E.; Ur, C.A. doi  openurl
  Title Counting rate measurements for lifetime experiments using the RDDS method with the new generation gamma-ray array AGATA Type Journal Article
  Year 2014 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 758 Issue Pages 1-3  
  Keywords Lifetime measurement; gamma spectroscopy; Counting rate  
  Abstract The differential Recoil Distance Doppler Shift (RDDS) method after multinucleon transfer (MNT) reactions to measure lifetimes of excited states in neutron-rich nuclei requires the use of a thick energy degrader for the recoiling ejectiles that are then detected in a spectrometer. This type of measurements greatly benefits from the use of the new generation segmented gamma-ray detectors, such as the AGATA demonstrator which offers unprecedented energy and angular resolutions. In order to make an optimized choice of the material and the thickness of the degrader for lifetime measurements using the RODS method after MNT, an experiment has been performed with the AGATA demonstrator. Counting rate measurements for different degraders are presented.  
  Address [Goasduff, A.; Haas, F.; Courtin, S.] Univ Strasbourg, IPHC, F-67037 Strasbourg, France, Email: Alain.Goasduff@csnsm.in2p3.fr  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000338348900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1829  
Permanent link to this record
 

 
Author (down) Gil, A.; Diaz, J.; Gomez-Cadenas, J.J.; Herrero, V.; Rodriguez, J.; Serra, L.; Toledo, J.; Esteve, R.; Monzo, J.M.; Monrabal, F.; Yahlali, N. doi  openurl
  Title Front-end electronics for accurate energy measurement of double beta decays Type Journal Article
  Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 695 Issue Pages 407-409  
  Keywords Front-end electronics; Xenon gas TPC; Energy measurement; Electroluminiscence; Double-beta decay  
  Abstract NEXT, a double beta decay experiment that will operate in Canfranc Underground Laboratory (Spain), aims at measuring the neutrinoless double-beta decay of the 136Xe isotope using a TPC filled with enriched Xenon gas at high pressure operated in electroluminescence mode. One technological challenge of the experiment is to achieve resolution better than 1% in the energy measurement using a plane of UV sensitive photomultipliers readout with appropriate custom-made front-end electronics. The front-end is designed to be sensitive to the single photo-electron to detect the weak primary scintillation light produced in the chamber, and also to be able to cope with the electroluminescence signal (several hundred times higher and with a duration of microseconds). For efficient primary scintillation detection and precise energy measurement of the electroluminescent signals the front-end electronics features low noise and adequate amplification. The signal shaping provided allows the digitization of the signals at a frequency as low as 40 MHz.  
  Address [Gil, A.; Diaz, J.; Gomez-Cadenas, J. J.; Rodriguez, J.; Serra, L.; Monrabal, F.; Yahlali, N.] Inst Fis Corpuscular CSIC UV, Valencia 46071, Spain, Email: alejandro.gil@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000311469900092 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 1238  
Permanent link to this record
 

 
Author (down) Gariazzo, S.; Mena, O.; Schwetz, T. url  doi
openurl 
  Title Quantifying the tension between cosmological and terrestrial constraints on neutrino masses Type Journal Article
  Year 2023 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe  
  Volume 40 Issue Pages 101226 - 8pp  
  Keywords Neutrino masses; Neutrino mass ordering; Neutrino oscillations; Cosmological measurements of neutrino; masses  
  Abstract The sensitivity of cosmology to the total neutrino mass scale E m & nu; is approaching the minimal values required by oscillation data. We study quantitatively possible tensions between current and forecasted cosmological and terrestrial neutrino mass limits by applying suitable statistical tests such as Bayesian suspiciousness, parameter goodness-of-fit tests, or a parameter difference test. In particular, the tension will depend on whether the normal or the inverted neutrino mass ordering is assumed. We argue, that it makes sense to reject inverted ordering from the cosmology/oscillation comparison only if data are consistent with normal ordering. Our results indicate that, in order to reject inverted ordering with this argument, an accuracy on the sum of neutrino masses & sigma;(m & nu;) of better than 0.02 eV would be required from future cosmological observations.  
  Address [Gariazzo, Stefano] Ist Nazl Fis Nucl INFN, Sez Torino, Via P Giuria 1, I-10125 Turin, Italy, Email: gariazzo@to.infn.it  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001042929800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5623  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva