toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Roman, F.L.; Abler, D.; Kanellopoulos, V.; Amoros, G.; Davies, J.; Dosanjh, M.; Jena, R.; Kirkby, N.; Peach, K.; Salt, J. doi  openurl
  Title Hadron therapy information sharing prototype Type Journal Article
  Year 2013 Publication Journal of Radiation Research Abbreviated Journal J. Radiat. Res.  
  Volume 54 Issue Pages 56-60  
  Keywords hadron therapy; proton therapy; data federation; web portal; eHealth; cancer informatics  
  Abstract The European PARTNER project developed a prototypical system for sharing hadron therapy data. This system allows doctors and patients to record and report treatment-related events during and after hadron therapy. It presents doctors and statisticians with an integrated view of adverse events across institutions, using open-source components for data federation, semantics, and analysis. There is a particular emphasis upon semantic consistency, achieved through intelligent, annotated form designs. The system as presented is ready for use in a clinical setting, and amenable to further customization. The essential contribution of the work reported here lies in the novel data integration and reporting methods, as well as the approach to software sustainability achieved through the use of community-supported open-source components.  
  Address [Roman, Faustin Laurentiu; Abler, Daniel; Kanellopoulos, Vassiliki; Dosanjh, Manjit] CERN, European Org Nucl Res, CH-1211 Geneva 23, Switzerland, Email: faustin.roman@medaustron.at  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0449-3060 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000321463900008 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1519  
Permanent link to this record
 

 
Author (down) Poley, L.; Stolzenberg, U.; Schwenker, B.; Frey, A.; Gottlicher, P.; Marinas, C.; Stanitzki, M.; Stelzer, B. doi  openurl
  Title Mapping the material distribution of a complex structure in an electron beam Type Journal Article
  Year 2021 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.  
  Volume 16 Issue 1 Pages P01010 - 33pp  
  Keywords Detector modelling and simulations I (interaction of radiation with matter, interaction of photons with matter, interaction of hadrons with matter, etc); Particle tracking detectors; Detector design and construction technologies and materials  
  Abstract The simulation and analysis of High Energy Physics experiments require a realistic simulation of the detector material and its distribution. The challenge is to describe all active and passive parts of large scale detectors like ATLAS in terms of their size, position and material composition. The common method for estimating the radiation length by weighing individual components, adding up their contributions and averaging the resulting material distribution over extended structures provides a good general estimate, but can deviate significantly from the material actually present. A method has been developed to assess its material distribution with high spatial resolution using the reconstructed scattering angles and hit positions of high energy electron tracks traversing an object under investigation. The study presented here shows measurements for an extended structure with a highly inhomogeneous material distribution. The structure under investigation is an End-of-Substructure-card prototype designed for the ATLAS Inner Tracker strip tracker – a PCB populated with components of a large range of material budgets and sizes. The measurements presented here summarise requirements for data samples and reconstructed electron tracks for reliable image reconstruction of large scale, inhomogeneous samples, choices of pixel sizes compared to the size of features under investigation as well as a bremsstrahlung correction for high material densities and thicknesses.  
  Address [Poley, L.; Stelzer, B.] Simon Fraser Univ, Dept Phys, Univ Dr, Burnaby, BC, Canada, Email: APoley@cern.ch  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1748-0221 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000608273000010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4687  
Permanent link to this record
 

 
Author (down) Piersanti, L.; Bellini, F.; Bini, F.; Collamati, F.; De Lucia, E.; Durante, M.; Faccini, R.; Ferroni, F.; Fiore, S.; Iarocci, E.; La Tessa, C.; Marafini, M.; Mattei, I.; Patera, V.; Ortega, P.G.; Sarti, A.; Schuy, C.; Sciubba, A.; Vanstalle, M.; Voena, C. doi  openurl
  Title Measurement of charged particle yields from PMMA irradiated by a 220 MeV/u C-12 beam Type Journal Article
  Year 2014 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.  
  Volume 59 Issue 7 Pages 1857-1872  
  Keywords drift chamber; LYSO; hadrontherapy; carbon ion beam; dose monitoring  
  Abstract The radiation used in hadrontherapy treatments interacts with the patient body producing secondary particles, either neutral or charged, that can be used for dose and Bragg peak monitoring and to provide a fast feedback on the treatment plans. Recent results obtained from the authors on simplified setups (mono-energetic primary beams interacting with homogeneous tissue like target) have already indicated the correlation that exists between the flux of these secondaries coming from the target (e.g. protons and photons) and the position of the primary beam Bragg peak. In this paper, the measurements of charged particle fluxes produced by the interaction of a 220 MeV/u carbon ion beam at GSI, Darmstadt, with a polymethyl methacrylate target are reported. The emission region of protons (p), deuterons (d) and tritons (t) has been characterized using a drift chamber while the particle time-of-flight, used to compute the kinetic energy spectra, was measured with a LYSO scintillator.The energy released in the LYSO crystal was used for particle identification purposes. The measurements were repeated with the setup at 60 degrees and 90 degrees with respect to the primary beam direction. The accuracy on the fragments emission profile reconstruction and its relationship with the Bragg peak position have been studied. Based on the acquired experimental evidence, a method to monitor the dose profile and the position of the Bragg peak inside the target is proposed.  
  Address [Piersanti, L.; De Lucia, E.; Iarocci, E.; Mattei, I.; Sarti, A.] Ist Nazl Fis Nucl, Lab Nazl Frascati, I-00044 Frascati, Italy, Email: vincenzo.patera@lnf.infn.it  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9155 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000333186200020 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1735  
Permanent link to this record
 

 
Author (down) Perez-Ramos, R.; Mathieu, V.; Sanchis-Lozano, M.A. url  doi
openurl 
  Title Heavy quark flavour dependence of multiparticle production in QCD jets Type Journal Article
  Year 2010 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 047 - 24pp  
  Keywords Jets; Hadronic Colliders; QCD  
  Abstract After inserting the heavy quark mass dependence into QCD partonic evolution equations, we determine the mean charged hadron multiplicity and second multiplicity correlators of jets produced in high energy collisions. We thereby extend the so-called dead cone effect to the phenomenology of multiparticle production in QCD jets and find that the average multiplicity of heavy-quark initiated jets decreases significantly as compared to the massless case, even taking into account the weak decay products of the leading primary quark. We emphasize the relevance of our study as a complementary check of b-tagging techniques at hadron colliders like the Tevatron and the LHC.  
  Address [Perez-Ramos, Redamy] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: redamy.perez@uv.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000282368500019 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 356  
Permanent link to this record
 

 
Author (down) PANDA Collaboration (Singh, B. et al); Diaz, J. url  doi
openurl 
  Title Technical design report for the (P)over-barANDA Barrel DIRC detector Type Journal Article
  Year 2019 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 46 Issue 4 Pages 045001 - 155pp  
  Keywords particle identification; ring imaging Cherenkov detector; DIRC counter; PANDA experiment; hadron physics  
  Abstract The (P) over bar ANDA (anti-Proton ANnihiliation at DArmstadt) experiment will be one of the four flagship experiments at the new international accelerator complex FAIR (Facility for Antiproton and Ion Research) in Darmstadt, Germany. (P) over bar ANDA will address fundamental questions of hadron physics and quantum chromodynamics using high-intensity cooled antiproton beams with momenta between 1.5 and 15 GeV/c and a design luminosity of up to 2 x 10(32) cm(-2) S-1. Excellent particle identification (PID) is crucial to the success of the (P) over bar ANDA physics program. Hadronic PID in the barrel region of the target spectrometer will be performed by a fast and compact Cherenkov counter using the detection of internally reflected Cherenkov light (DIRC) technology. It is designed to cover the polar angle range from 22 degrees to 140 degrees and will provide at least 3 standard deviations (s.d.) pi/K separation up to 3.5 GeV/c, matching the expected upper limit of the final state kaon momentum distribution from simulation. This documents describes the technical design and the expected performance of the (P) over bar ANDA Barrel DIRC detector. The design is based on the successful BaBar DIRC with several key improvements. The performance and system cost were optimized in detailed detector simulations and validated with full system prototypes using particle beams at GSI and CERN. The final design meets or exceeds the PID goal of clean pi/K separation with at least 3 s.d. over the entire phase space of charged kaons in the Barrel DIRC.  
  Address [Singh, B.] Aligarth Muslim Univ, Phys Dept, Aligarh, India, Email: j.schwiening@gsi.de  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000460153900001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3930  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva