toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Villaescusa-Navarro, F. et al; Villanueva-Domingo, P. url  doi
openurl 
  Title The CAMELS Project: Public Data Release Type Journal Article
  Year 2023 Publication Astrophysical Journal Supplement Series Abbreviated Journal Astrophys. J. Suppl. Ser.  
  Volume 265 Issue 2 Pages 54 - 14pp  
  Keywords Cosmology; Hydrodynamical simulations; Astrostatistics; Galaxy formation  
  Abstract The Cosmology and Astrophysics with Machine Learning Simulations (CAMELS) project was developed to combine cosmology with astrophysics through thousands of cosmological hydrodynamic simulations and machine learning. CAMELS contains 4233 cosmological simulations, 2049 N-body simulations, and 2184 state-of-the-art hydrodynamic simulations that sample a vast volume in parameter space. In this paper, we present the CAMELS public data release, describing the characteristics of the CAMELS simulations and a variety of data products generated from them, including halo, subhalo, galaxy, and void catalogs, power spectra, bispectra, Lya spectra, probability distribution functions, halo radial profiles, and X-rays photon lists. We also release over 1000 catalogs that contain billions of galaxies from CAMELS-SAM: a large collection of N-body simulations that have been combined with the Santa Cruz semianalytic model. We release all the data, comprising more than 350 terabytes and containing 143,922 snapshots, millions of halos, galaxies, and summary statistics. We provide further technical details on how to access, download, read, and process the data at .  
  Address [Villaescusa-Navarro, Francisco; Genel, Shy; Angles-Alcazar, Daniel; Hassan, Sultan; Pisani, Alice; Wong, Kaze W. K.; Coulton, William R.; Steinwandel, Ulrich P.; Spergel, David N.; Burkhart, Blakesley; Wandelt, Benjamin; Somerville, Rachel S.; Bryan, Greg L.; Li, Yin] Flatiron Inst, Ctr Computat Astrophys, 162 5th Ave, New York, NY 10010 USA, Email: camel.simulations@gmail.com  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0067-0049 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000964876300001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5525  
Permanent link to this record
 

 
Author (down) Mena, O.; Palomares-Ruiz, S.; Villanueva-Domingo, P.; Witte, S.J. url  doi
openurl 
  Title Constraining the primordial black hole abundance with 21-cm cosmology Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 100 Issue 4 Pages 043540 - 23pp  
  Keywords  
  Abstract The discoveries of a number of binary black hole mergers by LIGO and VIRGO have reinvigorated the interest that primordial black holes (PBHs) of tens of solar masses could contribute non-negligibly to the dark matter energy density. Should even a small population of PBHs with masses greater than or similar to O(M-circle dot) exist, they could profoundly impact the properties of the intergalactic medium and provide insight into novel processes at work in the early Universe. We demonstrate here that observations of the 21-cm transition in neutral hydrogen during the epochs of reionization and cosmic dawn will likely provide one of the most stringent tests of solar mass PBHs. In the context of 21-cm cosmology, PBHs give rise to three distinct observable effects: (i) the modification to the primordial power spectrum (and thus also the halo mass function) induced by Poisson noise, (ii) a uniform heating and ionization of the intergalactic medium via x-rays produced during accretion, and (iii) a local modification to the temperature and density of the ambient medium surrounding isolated PBHs. Using a four-parameter astrophysical model, we show that experiments like SKA and HERA could potentially improve upon existing constraints derived using observations of the cosmic microwave background by more than 1 order of magnitude.  
  Address [Mena, Olga; Palomares-Ruiz, Sergio; Villanueva-Domingo, Pablo; Witte, Samuel J.] Univ Valencia, CSIC, Inst Fis Corpuscular IFIC, Apartado Correos 22085, E-46071 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000483047300003 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 4122  
Permanent link to this record
 

 
Author (down) Lopez-Honorez, L.; Mena, O.; Villanueva-Domingo, P. url  doi
openurl 
  Title Dark matter microphysics and 21 cm observations Type Journal Article
  Year 2019 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 99 Issue 2 Pages 023522 - 12pp  
  Keywords  
  Abstract Dark matter interactions with massless or very light standard model particles, as photons or neutrinos, may lead to a suppression of the matter power spectrum at small scales and of the number of low mass haloes. Bounds on the dark matter scattering cross section with light degrees of freedom in such interacting dark matter (IDM) scenarios have been obtained from e.g., early time cosmic microwave background physics and large scale structure observations. Here we scrutinize dark matter microphysics in light of the claimed 21 cm EDGES 78 MHz absorption signal. IDM is expected to delay the 21 cm absorption features due to collisional damping effects. We identify the astrophysical conditions under which the existing constraints on the dark matter scattering cross section could be largely improved due to the IDM imprint on the 21 cm signal, providing also an explicit comparison to the WDM scenario.  
  Address [Lopez-Honorez, Laura] Univ Libre Bruxelles, Serv Phys Theor, CP225,Blvd Triomphe, B-1050 Brussels, Belgium, Email: llopezho@ulb.ac.be;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000456291400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3885  
Permanent link to this record
 

 
Author (down) Lopez-Honorez, L.; Mena, O.; Palomares-Ruiz, S.; Villanueva-Domingo, P.; Witte, S.J. url  doi
openurl 
  Title Variations in fundamental constants at the cosmic dawn Type Journal Article
  Year 2020 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 06 Issue 6 Pages 026 - 25pp  
  Keywords cosmology of theories beyond the SM; particle physics – cosmology connection; reionization  
  Abstract The observation of space-time variations in fundamental constants would provide strong evidence for the existence of new light degrees of freedom in the theory of Nature. Robustly constraining such scenarios requires exploiting observations that span different scales and probe the state of the Universe at different epochs. In the context of cosmology, both the cosmic microwave background and the Lyman-a forest have proven to be powerful tools capable of constraining variations in electromagnetism, however at the moment there do not exist cosmological probes capable of bridging the gap between recombination and reionization. In the near future, radio telescopes will attempt to measure the 21 cm transition of neutral hydrogen during the epochs of reionization and the cosmic dawn (and potentially the tail end of the dark ages); being inherently sensitive to electromagnetic phenomena, these experiments will offer a unique perspective on space-time variations of the fine-structure constant and the electron mass. We show here that large variations in these fundamental constants would produce features on the 21 cm power spectrum that may be distinguishable from astrophysical uncertainties. Furthermore, we forecast the sensitivity for the Square Kilometer Array, and show that the 21 cm power spectrum may be able to constrain variations at the level of O(10(-3)).  
  Address [Lopez-Honorez, Laura] Univ Libre Bruxelles, Serv Phys Theor, CP225, B-1050 Brussels, Belgium, Email: llopezho@ulb.ac.be;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000551875400049 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4473  
Permanent link to this record
 

 
Author (down) Lopez-Honorez, L.; Mena, O.; Palomares-Ruiz, S.; Villanueva-Domingo, P. url  doi
openurl 
  Title Warm dark matter and the ionization history of the Universe Type Journal Article
  Year 2017 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 96 Issue 10 Pages 103539 - 14pp  
  Keywords  
  Abstract In warm dark matter scenarios structure formation is suppressed on small scales with respect to the cold dark matter case, reducing the number of low-mass halos and the fraction of ionized gas at high redshifts and thus, delaying reionization. This has an impact on the ionization history of the Universe and measurements of the optical depth to reionization, of the evolution of the global fraction of ionized gas and of the thermal history of the intergalactic medium, can be used to set constraints on the mass of the dark matter particle. However, the suppression of the fraction of ionized medium in these scenarios can be partly compensated by varying other parameters, as the ionization efficiency or the minimum mass for which halos can host star-forming galaxies. Here we use different data sets regarding the ionization and thermal histories of the Universe and, taking into account the degeneracies from several astrophysical parameters, we obtain a lower bound on the mass of thermal warm dark matter candidates of m(X) > 1.3 keV, or m(s) > 5.5 keV for the case of sterile neutrinos nonresonantly produced in the early Universe, both at 90% confidence level.  
  Address [Lopez-Honorez, Laura] Univ Libre Bruxelles, Serv Phys Theor, CP225,Bld Triomphe, B-1050 Brussels, Belgium  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000416238500002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3390  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva