toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Wimmer, K. et al; Algora, A.; Rubio, B. url  doi
openurl 
  Title Discovery of Br-68 in secondary reactions of radioactive beams Type Journal Article
  Year 2019 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 795 Issue Pages 266-270  
  Keywords Radioactive beams; New isotope; Direct reaction  
  Abstract The proton-rich isotope Br-68 was discovered in secondary fragmentation reactions of fast radioactive beams. Proton-rich secondary beams of (70,71,72) Kr and Br-70, produced at the RIKEN Nishina Center and identified by the BigRIPS fragment separator, impinged on a secondary Be-9 target. Unambiguous particle identification behind the secondary target was achieved with the ZeroDegree spectrometer. Based on the expected direct production cross sections from neighboring isotopes, the lifetime of the ground or long-lived isomeric state of Br-68 was estimated. The results suggest that secondary fragmentation reactions, where relatively few nucleons are removed from the projectile, offer an alternative way to search for new isotopes, as these reactions populate preferentially low-lying states.  
  Address [Wimmer, K.; Ando, T.; Koyama, S.; Nagamine, S.; Niikura, M.; Saito, Ty; Sakurai, H.; Taniuchi, R.] Univ Tokyo, Dept Phys, Bunkyo Ku, 7-3-1 Hongo, Tokyo 1130033, Japan, Email: wimmer@phys.s.u-tokyo.ac.jp  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000477924000037 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4100  
Permanent link to this record
 

 
Author (down) Wimmer, K. et al; Algora, A.; Rubio, B. url  doi
openurl 
  Title Shape coexistence revealed in the N = Z isotope Kr-72 through inelastic scattering Type Journal Article
  Year 2020 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A  
  Volume 56 Issue 6 Pages 159 - 12pp  
  Keywords  
  Abstract The N = Z = 36 nucleus Kr-72 has been studied by inelastic scattering at intermediate energies. Two targets, Be-9 and Au-197, were used to extract the nuclear deformation length, delta(N), and the reduced E2 transition probability, B(E2). The previously unknown non-yrast 2(+) and 4(+) states as well as a new candidate for the octupole 3(-) state have been observed in the scattering on the Be target and placed in the level scheme based on gamma – gamma coincidences. The second 2(+) state was also observed in the scattering on the Au target and the B(E2; 2(2)(+) -> 0(1)(+)) value could be determined for the first time. Analyzing the results in terms of a two-band mixing model shows clear evidence for a oblate-prolate shape coexistence and can be explained by a shape change from an oblate ground state to prolate deformed yrast band from the first 2+ state. This interpretation is corroborated by beyond mean field calculations using the Gogny D1S interaction.  
  Address [Wimmer, K.; Ando, T.; Koyama, S.; Nagamine, S.; Niikura, M.; Saito, T. Y.; Sakurai, H.; Taniuchi, R.] Univ Tokyo, Dept Phys, Bunkyo Ku, Tokyo 1130033, Japan, Email: k.wimmer@csic.es  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1434-6001 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000540063900002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4428  
Permanent link to this record
 

 
Author (down) Wimmer, K. et al; Algora, A.; Rubio, B. url  doi
openurl 
  Title Shape Changes in the Mirror Nuclei Kr-70 and Se-70 Type Journal Article
  Year 2021 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 126 Issue 7 Pages 072501 - 6pp  
  Keywords  
  Abstract We studied the proton-rich T-z = -1 nucleus Kr-70 through inelastic scattering at intermediate energies in order to extract the reduced transition probability, B(E2; 0+ -> 2+). Comparison with the other members of the A = 70 isospin triplet, Br-70 and Se-70, studied in the same experiment, shows a 3 sigma deviation from the expected linearity of the electromagnetic matrix elements as a function of T-z. At present, no established nuclear structure theory can describe this observed deviation quantitatively. This is the first violation of isospin symmetry at this level observed in the transition matrix elements. A heuristic approach may explain the anomaly by a shape change between the mirror nuclei Kr-70 and Se-70 contrary to the model predictions.  
  Address [Wimmer, K.] CSIC, Inst Estruct Mat, E-28006 Madrid, Spain, Email: k.wimmer@csic.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000619237200006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4715  
Permanent link to this record
 

 
Author (down) Wilson, J.N. et al; Algora, A. doi  openurl
  Title Angular momentum generation in nuclear fission Type Journal Article
  Year 2021 Publication Nature Abbreviated Journal Nature  
  Volume 590 Issue 7847 Pages 566-570  
  Keywords  
  Abstract When a heavy atomic nucleus splits (fission), the resulting fragments are observed to emerge spinning(1); this phenomenon has been a mystery in nuclear physics for over 40 years(2,3). The internal generation of typically six or seven units of angular momentum in each fragment is particularly puzzling for systems that start with zero, or almost zero, spin. There are currently no experimental observations that enable decisive discrimination between the many competing theories for the mechanism that generates the angular momentum(4-12). Nevertheless, the consensus is that excitation of collective vibrational modes generates the intrinsic spin before the nucleus splits (pre-scission). Here we show that there is no significant correlation between the spins of the fragment partners, which leads us to conclude that angular momentum in fission is actually generated after the nucleus splits (post-scission). We present comprehensive data showing that the average spin is strongly mass-dependent, varying in saw-tooth distributions. We observe no notable dependence of fragment spin on the mass or charge of the partner nucleus, confirming the uncorrelated post-scission nature of the spin mechanism. To explain these observations, we propose that the collective motion of nucleons in the ruptured neck of the fissioning system generates two independent torques, analogous to the snapping of an elastic band. A parameterization based on occupation of angular momentum states according to statistical theory describes the full range of experimental data well. This insight into the role of spin in nuclear fission is not only important for the fundamental understanding and theoretical description of fission, but also has consequences for the gamma-ray heating problem in nuclear reactors(13,14), for the study of the structure of neutron-rich isotopes(15,16), and for the synthesis and stability of super-heavy elements(17,18). gamma-ray spectroscopy experiments on the origin of spin in the products of nuclear fission of spin-zero nuclei suggest that the fission fragments acquire their spin after scission, rather than before.  
  Address [Wilson, J. N.; Thisse, D.; Lebois, M.; Jovancevic, N.; Adsley, P.; Babo, M.; Chakma, R.; Delafosse, C.; Haefner, G.; Hauschild, K.; Ibrahim, F.; Ljungvall, J.; Lopez-Martens, A.; Lozeva, R.; Matea, I; Nemer, J.; Popovitch, Y.; Qi, L.; Tocabens, G.; Verney, D.] Univ Paris Saclay, IJC Lab, CNRS, IN2P3, Orsay, France, Email: jonathan.wilson@ijclab.in2p3.fr  
  Corporate Author Thesis  
  Publisher Nature Research Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000621583600006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4717  
Permanent link to this record
 

 
Author (down) Wendt, A. et al; Algora, A. doi  openurl
  Title Isospin symmetry in the sd shell: Transition strengths in the neutron-deficient sd shell nucleus Ar-33 Type Journal Article
  Year 2014 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 90 Issue 5 Pages 054301 - 7pp  
  Keywords  
  Abstract Reduced transition strengths of the deexciting transitions from the first two excited states in Ar-33 were measured in a relativistic Coulomb excitation experiment at the GSI Helmholtz center. The radioactive ion beam was produced by fragmentation of a primary Ar-36 beam on a Be-9 target followed by the selection of the reaction product of interest via the GSI Fragment Separator. The (33A)r beam hit a secondary Au-197 target with an energy of approximately 145 MeV/nucleon. An array of high-purity germanium cluster detectors and large-volume BaF2 scintillator detectors were employed for gamma-ray spectroscopy at the secondary target position. The Lund-York-Cologne Calorimeter was used to track the outgoing ions and to identify the nuclear reaction channels. For the two lowest energy excited states of Ar-33 the reduced transition strengths have been determined. With these first results the T-z = -3/2 nucleus Ar-33 is now, together with Na-21 (T-z = -1/2), the only neutron-deficient odd-A sd shell nucleus in which experimental transition strengths are available. The experimental values are compared to results of shell-model calculations which describe simultaneously mirror-energy differences and transition-strength values of mirror pairs in the sd shell in a consistent way.  
  Address [Wendt, A.; Taprogge, J.; Reiter, P.; Blazhev, A.; Braun, N.; Geibel, K.; Hackstein, M.; Moschner, K.; Siebeck, B.; Warr, N.] Univ Cologne, Inst Kernphys, Cologne, Germany  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0556-2813 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000344489100002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2005  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva