Feijoo, A., Mantovani Sarti, V., Nieves, J., Ramos, A., & Vidaña, I. (2025). Bridging correlation and spectroscopy measurements to access the hadron interaction behind molecular states: The case of the Ξ(1620) and Ξ(1690) in the K – Λ system. Phys. Rev. D, 111(1), 014022–15pp.
Abstract: We study the compatibility between the K-A correlation function, recently measured by the ALICE collaboration, and the LHCb K-A invariant mass distribution obtained in the -b -> J/psi AK- decay. The K-A invariant mass distribution associated with the – b decay has been calculated within the framework of unitary effective field theories using two models, one of them constrained by the K-A correlation function. We consider two degenerate pentaquark PAs states in the J/psi A scattering amplitude which allows us to investigate their impact on both the K-A and J/psi A mass distributions assuming different spin-parity quantum numbers and multiplicity. Without any fitting procedure, the K-A model is able to better reproduce the experimental K-A mass spectrum in the energy region above 1680 MeV as compared to previous unitarized scattering amplitudes constrained to a large amount of experimental data in the neutral S = -1 meson-baryon sector. We observe a tension between our model and the LHCb K-A distribution in the region close to threshold, largely dominated by the presence of the still poorly known (1620) state. We discuss in detail the different production mechanisms probed via femtoscopy and spectroscopy that could provide valid explanations for such disagreement, indicating the necessity to employ future correlation data in other S = -2 channels such as pi and K<overline>Sigma.
|
Feijoo, A., Molina, R., Dai, L. R., & Oset, E. (2022). Lambda(1405) mediated triangle singularity in the K(-)d -> p Sigma(-) reaction. Eur. Phys. J. C, 82(11), 1028–16pp.
Abstract: We study for the first time the p Sigma(-) -> K- d and K- d -> p Sigma(-) reactions close to threshold and show that they are driven by a triangle mechanism, with the Lambda(1405), a proton and a neutron as intermediate states, which develops a triangle singularity close to the (K) over bard threshold. We find that a mechanism involving virtual pion exchange and the K- p -> pi(+)Sigma(-) amplitude dominates over another one involving kaon exchange and the K- p -> K- p amplitude. Moreover, of the two Lambda(1405) states, the one with higher mass around 1420 MeV, gives the largest contribution to the process. We show that the cross section, well within measurable range, is very sensitive to different models that, while reproducing (K) over barN observables above threshold, provide different extrapolations of the (K) over barN amplitudes below threshold. The observables of this reaction will provide new constraints on the theoretical models, leading to more reliable extrapolations of the (K) over barN amplitudes below threshold and to more accurate predictions of the Lambda(1405) state of lower mass.
|
Feijoo, A., Valcarce Cadenas, V., & Magas, V. K. (2023). The Xi(1620) and Xi(1690) molecular states from S =-2 meson-baryon interaction up to next-to-leading order. Phys. Lett. B, 841, 137927–6pp.
Abstract: We have studied the meson-baryon interaction in the neutral S = -2 sector using an extended Unitarized Chiral Perturbation Theory, which takes into account not only the leading Weinberg-Tomozawa term (as all the previous studies in S = -2 sector), but also the Born terms and next-to-leading order contribution. Based on the SU(3) symmetry of the chiral Lagrangian we took most of the model parameters from the BCN model [1], where these were fitted to a large amount of experimental data in the neutral S = -1 sector. We have shown that our approach is able to generate dynamically both Xi(1620) and Xi(1690) states in very reasonable agreement with the data, and can naturally explain the puzzle with the decay branching ratios of Xi(1690). Our results clearly illustrate the reliability of chiral models implementing unitarization in coupled channels and the importance of considering Born and NLO contributions for precise calculations.
|
Feijoo, A., Wang, W. F., Xiao, C. W., Wu, J. J., Oset, E., Nieves, J., et al. (2023). A new look at the P-cs states from a molecular perspective. Phys. Lett. B, 839, 137760–7pp.
Abstract: We have a look at the P-cs states generated from the interaction of (D) over bar(*)Xi(c)('*) coupled channels. We consider the blocks of pseudoscalar-baryon (1/2(+) , 3/2(+)) and vector-baryon (1/2(+), 3/2(+)), and find 10 resonant states coupling mostly to (D) over bar Xi(c), <(D)*over bar>*Xi(c), (D) over bar Xi(c)' <(DA novel aspect of the work is the realization that the <(Dover bar>Xi(c), (Dover bar>(s) Lambda(c) or (Dover bar>*Xi(c), D-s*Lambda(c) channels, with a strong transition potential, collaborate to produce a larger attraction than the corresponding states <(Dover bar>Xi(c), <(Dover bar>Lambda(c) or (D) over bar*Xi(c), (D) over bar*Lambda(c) appearing in the generation of the strangenessless P-c states, since in the latter case the transition potential between those channels is zero. The extra attraction obtained in the (D) over bar Xi(c), (D) over bar* Xi(c) pairs preclude the association of the P-cs(4338) state coupling mostly to (D) over bar*Xi(c) while the P-cs(4459) is associated to the state found that couples mostly to (D) over bar Xi(c)'. Four more states appear, like in other molecular pictures, and some of the states are degenerate in spin. Counting different spin states we find 10states, which we hope can be observed in the near future.
|
Mantovani Sarti, V., Feijoo, A., Vidana, I., Ramos, A., Giacosa, F., Hyodo, T., et al. (2024). Constraining the low-energy S =-2 meson-baryon interaction with two-particle correlations. Phys. Rev. D, 110(1), L011505–8pp.
Abstract: In this paper we present a novel method to extract information on hadron-hadron interactions using for the first time femtoscopic data to constrain the low-energy constants of a QCD effective Lagrangian. This method offers a new way to investigate the nonperturbative regime of QCD in sectors where scattering experiments are not feasible, such as the multistrange and charm ones. As an example of its application, we use the very precise K-Lambda correlation function data, recently measured in pp collisions at LHC, to constrain the strangeness S = -2 meson-baryon interaction. The model obtained delivers new insights on the molecular nature of the Xi(1620) and Xi(1690) states.
|