|   | 
Details
   web
Records
Author (up) Clinthorne, N.; Brzezinski, K.; Chesi, E.; Cochran, E.; Grkovski, M.; Grosicar, B.; Honscheid, K.; Huh, S.; Kagan, H.; Lacasta, C.; Linhart, V.; Mikuz, M.; Smith, D.S.; Stankova, V.; Studen, A.; Weilhammer, P.; Zontar, D.
Title Silicon as an unconventional detector in positron emission tomography Type Journal Article
Year 2013 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 699 Issue Pages 216-220
Keywords PET; Silicon detectors; Multiresolution imaging; Magnifying PET
Abstract Positron emission tomography (PET) is a widely used technique in medical imaging and in studying small animal models of human disease. In the conventional approach, the 511 keV annihilation photons emitted from a patient or small animal are detected by a ring of scintillators such as LYSO read out by arrays of photodetectors. Although this has been successful in achieving similar to 5 mm FWHM spatial resolution in human studies and similar to 1 mm resolution in dedicated small animal instruments, there is interest in significantly improving these figures. Silicon, although its stopping power is modest for 511 keV photons, offers a number of potential advantages over more conventional approaches including the potential for high intrinsic spatial resolution in 3D. To evaluate silicon in a variety of PET “magnifying glass” configurations, an instrument was constructed that consists of an outer partial-ring of PET scintillation detectors into which various arrangements of silicon detectors are inserted to emulate dual-ring or imaging probe geometries. Measurements using the test instrument demonstrated the capability of clearly resolving point sources of Na-22 having a 1.5 mm center-to-center spacing as well as the 1.2 mm rods of a F-18-filled resolution phantom. Although many challenges remain, silicon has potential to become the PET detector of choice when spatial resolution is the primary consideration. (C) 2012 Elsevier B.V. All rights reserved.
Address [Clinthorne, Neal; Huh, Sam] Univ Michigan, Dept Radiol, Ann Arbor, MI 48109 USA, Email: nclintho@umich.edu
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000312809200045 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1290
Permanent link to this record
 

 
Author (up) Domingo-Pardo, C.
Title A new technique for 3D gamma-ray imaging: Conceptual study of a 3D camera Type Journal Article
Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 675 Issue Pages 123-132
Keywords Gamma-ray detector; Three dimensional gamma-ray imaging; Compton camera; Gamma camera
Abstract A novel technique for 3D gamma-ray imaging is presented. This method combines the positron annihilation Compton scattering imaging technique with a supplementary position sensitive detector, which registers gamma-rays scattered in the object at angles of about 90 degrees. The 3D coordinates of the scattering location can be determined rather accurately by applying the Compton principle. This method requires access to the object from two orthogonal sides and allows one to achieve a position resolution of few mm in all three space coordinates. A feasibility study for a 3D camera is presented based on Monte Carlo calculations.
Address Univ Valencia, Inst Fis Corpuscular, CSIC, E-46071 Valencia, Spain, Email: domingo@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000302973600019 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 989
Permanent link to this record
 

 
Author (up) Domingo-Pardo, C.
Title i-TED: A novel concept for high-sensitivity (n,gamma) cross-section measurements Type Journal Article
Year 2016 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 825 Issue Pages 78-86
Keywords Radiative neutron capture; Neutron time-of-flight; Cross-section; Pulse-height weighting technique; Compton imaging
Abstract A new method for measuring (n, gamma) cross-sections aiming at enhanced signal-to-background ratio is presented. This new approach is based on the combination of the pulse-height weighting technique with a total energy detection system that features gamma-ray imaging capability (i-TED). The latter allows one to exploit Compton imaging techniques to discriminate between true capture gamma-rays arising from the sample under study and background gamma-rays coming from contaminant neutron (prompt or delayed) captures in the surrounding environment. A general proof-of-concept detection system for this application is presented in this paper together with a description of the imaging method and a conceptual demonstration based on Monte Carlo simulations.
Address [Domingo-Pardo, C.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46003 Valencia, Spain
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000376713700010 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2686
Permanent link to this record
 

 
Author (up) Doncel, M.; Cederwall, B.; Gadea, A.; Gerl, J.; Kojouharov, I.; Martin, S.; Palit, R.; Quintana, B.
Title Performance and imaging capabilities of the DEGAS high-resolution gamma-ray detector array for the DESPEC experiment at FAIR Type Journal Article
Year 2017 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 873 Issue Pages 36-38
Keywords Gamma spectroscopy; Imaging; Position-sensitive Ge detectors
Abstract Monte Carlo simulations of one of the possible configurations of the imaging phase for the DEGAS spectrometer situated at the DESPEC/NUSTAR experiment have been performed. The geometry consists of the coupling of the high-resolution gamma spectroscopy array, AGATA, with a high-resolution segmented planar detector utilized as an implantation detector in a compact configuration. The sensitivity and performance of the array in terms of efficiency and imaging capability is deduced.
Address [Doncel, M.] Univ Liverpool, Dept Phys, Oliver Lodge Lab, Liverpool, Merseyside, England, Email: doncel@liverpool.ac.uk
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000413823100008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3349
Permanent link to this record
 

 
Author (up) Etxebeste, A.; Dauvergne, D.; Fontana, M.; Letang, J.M.; Llosa, G.; Muñoz, E.; Oliver, J.F.; Testa, E.; Sarrut, D.
Title CCMod: a GATE module for Compton camera imaging simulation Type Journal Article
Year 2020 Publication Physics in Medicine and Biology Abbreviated Journal Phys. Med. Biol.
Volume 65 Issue 5 Pages 055004 - 17pp
Keywords Monte Carlo; simulation; gamma imaging; Compton camera
Abstract Compton cameras are gamma-ray imaging systems which have been proposed for a wide variety of applications such as medical imaging, nuclear decommissioning or homeland security. In the design and optimization of such a system Monte Carlo simulations play an essential role. In this work, we propose a generic module to perform Monte Carlo simulations and analyses of Compton Camera imaging which is included in the open-source GATE/Geant4 platform. Several digitization stages have been implemented within the module to mimic the performance of the most commonly employed detectors (e.g. monolithic blocks, pixelated scintillator crystals, strip detectors...). Time coincidence sorter and sequence coincidence reconstruction are also available in order to aim at providing modules to facilitate the comparison and reproduction of the data taken with different prototypes. All processing steps may be performed during the simulation (on-the-fly mode) or as a post-process of the output files (offline mode). The predictions of the module have been compared with experimental data in terms of energy spectra, angular resolution, efficiency and back-projection image reconstruction. Consistent results within a 3-sigma interval were obtained for the energy spectra except for low energies where small differences arise. The angular resolution measure for incident photons of 1275 keV was also in good agreement between both data sets with a value close to 13 degrees. Moreover, with the aim of demonstrating the versatility of such a tool the performance of two different Compton camera designs was evaluated and compared.
Address [Etxebeste, A.; Letang, J. M.; Sarrut, D.] Univ Lyon 1, Univ Lyon, CREATIS, CNRS UMR5220,Inserm U1044,INSA Lyon, Lyon, France, Email: ane.etxebeste@creatis.insa-lyon.fr
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9155 ISBN Medium
Area Expedition Conference
Notes WOS:000519034800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4321
Permanent link to this record
 

 
Author (up) Lerendegui-Marco, J.; Babiano-Suarez, V.; Balibrea-Correa, J.; Caballero, L.; Calvo, D.; Ladarescu, I.; Domingo-Pardo, C.
Title Simultaneous Gamma-Neutron Vision device: a portable and versatile tool for nuclear inspections Type Journal Article
Year 2024 Publication EPJ Techniques and Instrumentation Abbreviated Journal EPJ Tech. Instrum.
Volume 11 Issue 1 Pages 2 - 17pp
Keywords Gamma imaging; Neutron imaging; Nuclear inspections; Homeland security; Nuclear waste characterization
Abstract This work presents GN-Vision, a novel dual gamma-ray and neutron imaging system, which aims at simultaneously obtaining information about the spatial origin of gamma-ray and neutron sources. The proposed device is based on two position sensitive detection planes and exploits the Compton imaging technique for the imaging of gamma-rays. In addition, spatial distributions of slow- and thermal-neutron sources (<100 eV) are reconstructed by using a passive neutron pin-hole collimator attached to the first detection plane. The proposed gamma-neutron imaging device could be of prime interest for nuclear safety and security applications. The two main advantages of this imaging system are its high efficiency and portability, making it well suited for nuclear applications were compactness and real-time imaging is important. This work presents the working principle and conceptual design of the GN-Vision system and explores, on the basis of Monte Carlo simulations, its simultaneous gamma-ray and neutron detection and imaging capabilities for a realistic scenario where a Cf-252 source is hidden in a neutron moderating container.
Address [Lerendegui-Marco, Jorge; Babiano-Suarez, Victor; Balibrea-Correa, Javier; Caballero, Luis; Calvo, David; Ladarescu, Ion; Domingo-Pardo, Cesar] Univ Valencia, Inst Fis Corpuscular, CSIC, Valencia, Spain, Email: jorge.lerendegui@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2195-7045 ISBN Medium
Area Expedition Conference
Notes WOS:001171512700001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5975
Permanent link to this record
 

 
Author (up) Linhart, V.; Burdette, D.; Chessi, E.; Cindro, V.; Clinthorne, N.H.; Cochran, E.; Grosicar, B.; Honscheid, K.; Kagan, H.; Lacasta, C.; Llosa, G.; Mikuz, M.; Stankova, V.; Studen, A.; Weilhammer, P.; Zontar, D.
Title Spectroscopy study of imaging devices based on silicon Pixel Array Detector coupled to VATAGP7 read-out chips Type Journal Article
Year 2011 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 6 Issue Pages C01092 - 8pp
Keywords Gamma camera, SPECT, PET PET/CT, coronary CT angiography (CTA); Compton imaging
Abstract Spectroscopic and timing response studies have been conducted on a detector module consisting of a silicon Pixel Array Detector bonded on two VATAGP7 read-out chips manufactured by Gamma-Medica Ideas using laboratory gamma sources and the internal calibration facilities (the calibration system of the read-out chips). The performed tests have proven that the chips have (i) non-linear calibration curves which can be approximated by power functions, (ii) capability to measure the energy of photons with energy resolution better than 2 keV (exact range and resolution depend on experimental setup), (iii) the internal calibration facility which provides 6 out of 16 available internal calibration charges within our region of interest (spanning the Compton edge of 511 keV photons). The peaks induced by the internal calibration facility are suitable for a fit of the calibration curves. However, they are not suitable for measurements of equivalent noise charge because their full width at half maximum varies with their amplitude. These facts indicate that the VATAGP7 chips are useful and precise tools for a wide variety of spectroscopic devices. We have also explored time walk of the module and peaking time of the spectroscopy signals provided by the chips. We have observed that (iv) the time walk is caused partly by the peaking time of the signals provided by the fast shaper of the chips and partly by the timing uncertainty related to the varying position of the photon interaction, (v) the peaking time of the spectroscopy signals provided by the chips increases with increasing pulse height.
Address [Linhart, V.; Lacasta, C.; Llosa, G.; Stankova, V.] UVEG, CSIC, IFIC, Expt Phys Dept,Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: Vladimir.Linhart@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes ISI:000291345600097 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 645
Permanent link to this record
 

 
Author (up) Llosa, G.; Barrio, J.; Cabello, J.; Crespo, A.; Lacasta, C.; Rafecas, M.; Callier, S.; de la Taille, C.; Raux, L.
Title Detector characterization and first coincidence tests of a Compton telescope based on LaBr3 crystals and SiPMs Type Journal Article
Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 695 Issue Pages 105-108
Keywords Hadron therapy; Compton imaging; LaBr3; Continuous crystal; SiPM; MPPC; G-APD
Abstract A Compton telescope for dose monitoring in hadron therapy consisting of several layers of continuous LaBr3 crystals coupled to silicon photomultiplier (SiPM) arrays is under development within the ENVISION project. In order to test the possibility of employing such detectors for the telescope, a detector head consisting of a continuous 16 mm x 18 mm x 5 mm LaBr3 crystal coupled to a SiPM array has been assembled and characterized, employing the SPIROC1 ASIC as readout electronics. The best energy resolution obtained at 511 key is 6.5% FWHM and the timing resolution is 3.1 ns FWHM. A position determination method for continuous crystals is being tested, with promising results. In addition, the detector has been operated in time coincidence with a second detector layer, to determine the coincidence capabilities of the system. The first tests are satisfactory, and encourage the development of larger detectors that will compose the telescope prototype.
Address [Llosa, G.; Barrio, J.; Cabello, J.; Crespo, A.; Lacasta, C.; Rafecas, M.] UVEG, CSIC, IFIC, Inst Fis Corpuscular, Valencia, Spain, Email: gabriela.llosa@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000311469900020 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1235
Permanent link to this record
 

 
Author (up) Llosa, G.; Barrio, J.; Lacasta, C.; Callier, S.; Raux, L.; de La Taille, C.
Title First tests in the application of silicon photomultiplier arrays to dose monitoring in hadron therapy Type Journal Article
Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 648 Issue Pages S96-S99
Keywords Hadron therapy; Compton imaging; LaBr3; Continuous crystal; SiPM; MPPC; G-APD
Abstract A detector head composed of a continuous LaBr3 crystal coupled to a silicon photomultiplier array has been mounted and tested, for its use in a Compton telescope for dose monitoring in hadron therapy. The LaBr3 crystal has 16 mm x 18 mm x 5 mm size, and it is surrounded with reflecting material in five faces. The SiPM array has 16 (4 x 4) elements of 3 mm x 3 mm size. The SPIROC1 ASIC has been employed as readout electronics. The detector shows a linear behavior up to 1275 keV. The energy resolution obtained at 511 keV is 7% FWHM, and it varies as one over the square root of the energy up to the energies tested. The variations among the detector channels are within 12%. A preliminary measurement of the timing resolution gives 7 ns FWHM. The spatial resolution obtained with the center of gravity method is 1.2 mm FWHM. The tests performed confirm the correct functioning of the detector.
Address [Llosa, G.; Barrio, J.; Lacasta, C.] Inst Fis Corpuscular IFIC CSIC UVEG, Valencia, Spain, Email: gabriela.llosa@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000305376900026 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1068
Permanent link to this record
 

 
Author (up) Magan, D.L.P.; Caballero, L.; Domingo-Pardo, C.; Agramunt-Ros, J.; Albiol, F.; Casanovas, A.; Gonzalez, A.; Guerrero, C.; Lerendegui-Marco, J.; Tarifeño-Saldivia, A.
Title First tests of the applicability of gamma-ray imaging for background discrimination in time-of-flight neutron capture measurements Type Journal Article
Year 2016 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 823 Issue Pages 107-119
Keywords Neutron capture cross-sections; gamma-ray imaging; Total energy detectors; Pulse-height weighting technique; Time-of-flight method
Abstract In this work we explore for the first time the applicability of using gamma-ray imaging in neutron capture measurements to identify and suppress spatially localized background. For this aim, a pinhole gamma camera is assembled, tested and characterized in terms of energy and spatial performance. It consists of a monolithic CeBr3 scintillating crystal coupled to a position-sensitive photomultiplier and readout through an integrated circuit AMIC2GR. The pinhole collimator is a massive carven block of lead. A series of dedicated measurements with calibrated sources and with a neutron beam incident on a Au-197 sample have been carried out at n_TOF, achieving an enhancement of a factor of two in the signal-to-background ratio when selecting only those events coming from the direction of the sample.
Address [Perez Magan, D. L.; Caballero, L.; Domingo-Pardo, C.; Agramunt-Ros, J.; Albiol, F.; Tarifeno-Saldivia, A.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain, Email: domingo@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000374661600015 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2665
Permanent link to this record