toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Perez, A.; Romanelli, A. url  doi
openurl 
  Title Spatially Dependent Decoherence and Anomalous Diffussion of Quantum Walks Type Journal Article
  Year 2013 Publication Journal of Computational and Theoretical Nanoscience Abbreviated Journal J. Comput. Theor. Nanosci.  
  Volume 10 Issue 7 Pages 1591-1595  
  Keywords Decoherence; Quantum Walk; Non-Translational Invariance  
  Abstract We analyze the long time behavior of a discrete time quantum walk subject to decoherence with a strong spatial dependence, acting on one half of the lattice. We show that, except for limiting cases on the decoherence parameter, the quantum walk at late times behaves sub-ballistically, meaning that the characteristic features of the quantum walk are not completely spoiled. Contrarily to expectations, the asymptotic behavior is non Markovian, and depends on the amount of decoherence. This feature can be clearly shown on the long time value of the Generalized Chiral Distribution (GCD).  
  Address [Perez, A.] Univ Valencia, Dept Fis Teor, CSIC, E-46100 Burjassot, Spain  
  Corporate Author Thesis  
  Publisher Amer Scientific Publishers Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1546-1955 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000322605800007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1528  
Permanent link to this record
 

 
Author (down) Perez, A. url  doi
openurl 
  Title Information encoding of a qubit into a multilevel environment Type Journal Article
  Year 2010 Publication Physical Review A Abbreviated Journal Phys. Rev. A  
  Volume 81 Issue 5 Pages 052326 - 6pp  
  Keywords  
  Abstract I consider the interaction of a small quantum system (a qubit) with a structured environment consisting of many levels. The qubit will experience a decoherence process, which implies that part of its initial information will be encoded into correlations between system and environment. I investigate how this information is distributed on a given subset of levels as a function of its size, using the mutual information between both entities, in the spirit of the partial-information plots studied by Zurek and co-workers. In this case we can observe some differences, which arise from the fact that I am partitioning just one quantum system and not a collection of them. However, some similar features, like redundancy (in the sense that a given amount of information is shared by many subsets), which increases with the size of the environment, are also found here.  
  Address [Perez, A.] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1050-2947 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000278140000064 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ elepoucu @ Serial 445  
Permanent link to this record
 

 
Author (down) Perez, A. url  doi
openurl 
  Title Asymptotic properties of the Dirac quantum cellular automaton Type Journal Article
  Year 2016 Publication Physical Review A Abbreviated Journal Phys. Rev. A  
  Volume 93 Issue 1 Pages 012328 - 10pp  
  Keywords  
  Abstract We show that the Dirac quantum cellular automaton [A. Bisio, G. M. D'Ariano, and A. Tosini, Ann. Phys. (N. Y.) 354, 244 (2015)] shares many properties in common with the discrete-time quantum walk. These similarities can be exploited to study the automaton as a unitary process that takes place at regular time steps on a one-dimensional lattice, in the spirit of general quantum cellular automata. In this way, it becomes an alternative to the quantum walk, with a dispersion relation that can be controlled by a parameter that plays a similar role to the coin angle in the quantum walk. The Dirac Hamiltonian is recovered under a suitable limit. We provide two independent analytical approximations to the long-term probability distribution. It is shown that, starting from localized conditions, the asymptotic value of the entropy of entanglement between internal and motional degrees of freedom overcomes the known limit that is approached by the quantum walk for the same initial conditions and is similar to the ones achieved by highly localized states of the Dirac equation.  
  Address [Perez, A.] Univ Valencia, CSIC, IFIC, Dept Fis Teor, E-46100 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1050-2947 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000368291600005 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 2520  
Permanent link to this record
 

 
Author (down) Nzongani, U.; Zylberman, J.; Doncecchi, C.E.; Perez, A.; Debbasch, F.; Arnault, P. url  doi
openurl 
  Title Quantum circuits for discrete-time quantum walks with position-dependent coin operator Type Journal Article
  Year 2023 Publication Quantum Information Processing Abbreviated Journal Quantum Inf. Process.  
  Volume 22 Issue 7 Pages 270 - 46pp  
  Keywords Quantum walks; Quantum circuits; Quantum simulation  
  Abstract The aim of this paper is to build quantum circuits that implement discrete-time quantum walks having an arbitrary position-dependent coin operator. The position of the walker is encoded in base 2: with n wires, each corresponding to one qubit, we encode 2(n) position states. The data necessary to define an arbitrary position-dependent coin operator is therefore exponential in n. Hence, the exponentiality will necessarily appear somewhere in our circuits. We first propose a circuit implementing the position-dependent coin operator, that is naive, in the sense that it has exponential depth and implements sequentially all appropriate position-dependent coin operators. We then propose a circuit that “transfers” all the depth into ancillae, yielding a final depth that is linear in n at the cost of an exponential number of ancillae. Themain idea of this linear-depth circuit is to implement in parallel all coin operators at the different positions. Reducing the depth exponentially at the cost of having an exponential number of ancillae is a goal which has already been achieved for the problem of loading classical data on a quantum circuit (Araujo in Sci Rep 11:6329, 2021) (notice that such a circuit can be used to load the initial state of the walker). Here, we achieve this goal for the problem of applying a position-dependent coin operator in a discrete-time quantum walk. Finally, we extend the result of Welch (New J Phys 16:033040, 2014) from position-dependent unitaries which are diagonal in the position basis to position-dependent 2 x 2-block-diagonal unitaries: indeed, we show that for a position dependence of the coin operator (the block-diagonal unitary) which is smooth enough, one can find an efficient quantum-circuit implementation approximating the coin operator up to an error epsilon (in terms of the spectral norm), the depth and size of which scale as O(1/epsilon). A typical application of the efficient implementation would be the quantum simulation of a relativistic spin-1/2 particle on a lattice, coupled to a smooth external gauge field; notice that recently, quantum spatial-search schemes have been developed which use gauge fields as the oracle, to mark the vertex to be found (Zylberman in Entropy 23:1441, 2021), (Fredon arXiv:2210.13920). A typical application of the linear-depth circuit would be when there is spatial noise on the coin operator (and hence a non-smooth dependence in the position).  
  Address [Nzongani, Ugo; Doncecchi, Carlo-Elia; Arnault, Pablo] Univ Paris Saclay, CNRS, INRIA, Lab Methodes Formelles,ENS Paris Saclay, F-91190 Gif Sur Yvette, France, Email: ugo.nzongani@universite-paris-saclay.fr;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1570-0755 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001022408900002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5587  
Permanent link to this record
 

 
Author (down) Marquez-Martin, I.; Di Molfetta, G.; Perez, A. url  doi
openurl 
  Title Fermion confinement via quantum walks in (2+1)-dimensional and (3+1)-dimensional space-time Type Journal Article
  Year 2017 Publication Physical Review A Abbreviated Journal Phys. Rev. A  
  Volume 95 Issue 4 Pages 042112 - 5pp  
  Keywords  
  Abstract We analyze the properties of a two-and three-dimensional quantum walk that are inspired by the idea of a brane-world model put forward by Rubakov and Shaposhnikov [Phys. Lett. B 125, 136 (1983)]. In that model, particles are dynamically confined on the brane due to the interaction with a scalar field. We translated this model into an alternate quantum walk with a coin that depends on the external field, with a dependence which mimics a domain wall solution. As in the original model, fermions (in our case, the walker) become localized in one of the dimensions, not from the action of a random noise on the lattice (as in the case of Anderson localization) but from a regular dependence in space. On the other hand, the resulting quantum walk can move freely along the “ordinary” dimensions.  
  Address [Marquez-Martin, I.; Di Molfetta, G.; Perez, A.] Univ Valencia, CSIC, Dept Fis Teor, Dr Moliner 50, E-46100 Burjassot, Spain, Email: giuseppe.dimolfetta@lif.univ-mrs.fr  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9926 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000399931500006 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3102  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva