toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Yang, W.Q.; Pan, S.; Di Valentino, E.; Mena, O.; Melchiorri, A. url  doi
openurl 
  Title 2021-H-0 odyssey: closed, phantom and interacting dark energy cosmologies Type Journal Article
  Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 10 Issue 10 Pages 008 - 21pp  
  Keywords baryon acoustic oscillations; cosmological parameters from CMBR; cosmological perturbation theory; dark energy theory  
  Abstract Up-to-date cosmological data analyses have shown that (sigma) a closed universe is preferred by the Planck data at more than 99% CL, and (b) interacting scenarios offer a very compelling solution to the Hubble constant tension. In light of these two recent appealing scenarios, we consider here an interacting dark matter-dark energy model with a non-zero spatial curvature component and a freely varying dark energy equation of state in both the quintessential and phantom regimes. When considering Cosmic Microwave Background data only, a phantom and closed universe can perfectly alleviate the Hubble tension, without the necessity of a coupling among the dark sectors. Accounting for other possible cosmological observations compromises the viability of this very attractive scenario as a global solution to current cosmological tensions, either by spoiling its effectiveness concerning the H-0 problem, as in the case of Supernovae Ia data, or by introducing a strong disagreement in the preferred value of the spatial curvature, as in the case of Baryon Acoustic Oscillations.  
  Address [Yang, Weiqiang] Liaoning Normal Univ, Dept Phys, Dalian 116029, Peoples R China, Email: d11102004@163.com;  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000711524000011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5012  
Permanent link to this record
 

 
Author (down) Vagnozzi, S.; Di Valentino, E.; Gariazzo, S.; Melchiorri, A.; Mena, O.; Silk, J. url  doi
openurl 
  Title The galaxy power spectrum take on spatial curvature and cosmic concordance Type Journal Article
  Year 2021 Publication Physics of the Dark Universe Abbreviated Journal Phys. Dark Universe  
  Volume 33 Issue Pages 100851 - 17pp  
  Keywords Cosmological parameters; Spatial curvature; Cosmological tensions  
  Abstract The concordance of the ACDM cosmological model in light of current observations has been the subject of an intense debate in recent months. The 2018 Planck Cosmic Microwave Background (CMB) temperature anisotropy power spectrum measurements appear at face value to favour a spatially closed Universe with curvature parameter Omega(K) < 0. This preference disappears if Baryon Acoustic Oscillation (BAO) measurements are combined with Planck data to break the geometrical degeneracy, although the reliability of this combination has been questioned due to the strong tension present between the two datasets when assuming a curved Universe. Here, we approach this issue from yet another point of view, using measurements of the full-shape (FS) galaxy power spectrum, P(k), from the Baryon Oscillation Spectroscopic Survey DR12 CMASS sample. By combining Planck data with FS measurements, we break the geometrical degeneracy and find Omega(K) = 0.0023 +/- 0.0028. This constrains the Universe to be spatially flat to sub-percent precision, in excellent agreement with results obtained using BAO measurements. However, as with BAO, the overall increase in the best-fit chi(2) suggests a similar level of tension between Planck and P(k) under the assumption of a curved Universe. While the debate on spatial curvature and the concordance between cosmological datasets remains open, our results provide new perspectives on the issue, highlighting the crucial role of FS measurements in the era of precision cosmology.  
  Address [Vagnozzi, Sunny] Univ Cambridge, Kavli Inst Cosmol, Cambridge CB3 0HA, England, Email: sunny.vagnozzi@ast.cam.ac.uk;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000704383100022 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4984  
Permanent link to this record
 

 
Author (down) Pandolfi, S.; Giusarma, E.; Kolb, E.W.; Lattanzi, M.; Melchiorri, A.; Mena, O.; Pena, M.; Cooray, A.; Serra, P. url  doi
openurl 
  Title Impact of general reionization scenarios on extraction of inflationary parameters Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 82 Issue 12 Pages 123527 - 10pp  
  Keywords  
  Abstract Determination of whether the Harrison-Zel'dovich spectrum for primordial scalar perturbations is consistent with observations is sensitive to assumptions about the reionization scenario. In light of this result, we revisit constraints on inflationary models using more general reionization scenarios. While the bounds on the tensor-to-scalar ratio are largely unmodified, when different reionization schemes are addressed, hybrid models are back into the inflationary game. In the general reionization picture, we reconstruct both the shape and amplitude of the inflaton potential. We discuss how relaxing the simple reionization restriction affects the reconstruction of the potential through the changes in the constraints on the spectral index, the tensor-to-scalar ratio and the running of the spectral index. We also find that the inclusion of other Cosmic Microwave Background data in addition to the Wilkinson Microwave Anisotropy probe data excludes the very flat potentials typical of models in which the inflationary evolution reaches a late-time attractor, as a consequence of the fact that the running of the spectral index is constrained to be different from zero at 99% confidence level.  
  Address [Pandolfi, Stefania; Lattanzi, Massimiliano; Melchiorri, Alessandro] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000286744800007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 530  
Permanent link to this record
 

 
Author (down) Pandolfi, S.; Cooray, A.; Giusarma, E.; Kolb, E.W.; Melchiorri, A.; Mena, O.; Serra, P. url  doi
openurl 
  Title Harrison-Zel'dovich primordial spectrum is consistent with observations Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 81 Issue 12 Pages 123509 - 6pp  
  Keywords  
  Abstract Inflation predicts primordial scalar perturbations with a nearly scale-invariant spectrum and a spectral index approximately unity [the Harrison-Zel'dovich (HZ) spectrum]. The first important step for inflationary cosmology is to check the consistency of the HZ primordial spectrum with current observations. Recent analyses have claimed that a HZ primordial spectrum is excluded at more than 99% c. l. Here we show that the HZ spectrum is only marginally disfavored if one considers a more general reionization scenario. Data from the Planck mission will settle the issue.  
  Address [Pandolfi, Stefania] Univ Roma La Sapienza, ICRA, I-00185 Rome, Italy  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000278555900003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 426  
Permanent link to this record
 

 
Author (down) Martinelli, M.; Melchiorri, A.; Mena, O.; Salvatelli, V.; Girones, Z. url  doi
openurl 
  Title Future constraints on the Hu-Sawicki modified gravity scenario Type Journal Article
  Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 85 Issue 2 Pages 024006 - 7pp  
  Keywords  
  Abstract We present current and future constraints on the Hu and Sawicki modified gravity scenario. This model can reproduce a late time accelerated universe and evade Solar System constraints. While current cosmological data still allows for distinctive deviations from the cosmological constant picture, future measurements of the growth of structure combined with supernova Ia luminosity distance data will greatly improve present constraints.  
  Address [Martinelli, Matteo; Melchiorri, Alessandro; Salvatelli, Valentina] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000298990200005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 870  
Permanent link to this record
 

 
Author (down) Martinelli, M.; Lopez Honorez, L.; Melchiorri, A.; Mena, O. url  doi
openurl 
  Title Future CMB cosmological constraints in a dark coupled universe Type Journal Article
  Year 2010 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 81 Issue 10 Pages 103534 - 7pp  
  Keywords  
  Abstract Cosmic microwave background satellite missions as the ongoing Planck experiment are expected to provide the strongest constraints on a wide set of cosmological parameters. Those constraints, however, could be weakened when the assumption of a cosmological constant as the dark energy component is removed. Here we show that it will indeed be the case when there exists a coupling among the dark energy and the dark matter fluids. In particular, the expected errors on key parameters as the cold dark matter density and the angular diameter distance at decoupling are significantly larger when a dark coupling is introduced. We show that it will be the case also for future satellite missions as EPIC, unless CMB lensing extraction is performed.  
  Address [Martinelli, Matteo; Melchiorri, Alessandro] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000278146700047 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 429  
Permanent link to this record
 

 
Author (down) Giusarma, E.; Di Valentino, E.; Lattanzi, M.; Melchiorri, A.; Mena, O. url  doi
openurl 
  Title Relic neutrinos, thermal axions, and cosmology in early 2014 Type Journal Article
  Year 2014 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 90 Issue 4 Pages 043507 - 17pp  
  Keywords  
  Abstract We present up-to-date cosmological bounds on the sum of active neutrino masses as well as on extended cosmological scenarios with additional thermal relics, as thermal axions or sterile neutrino species. Our analyses consider all the current available cosmological data in the beginning of year 2014, including the very recent and most precise baryon acoustic oscillation measurements from the Baryon Oscillation Spectroscopic Survey. In the minimal three-active-neutrino scenario, we find Sigma m(nu) < 0.22 eV at 95% C.L. from the combination of cosmic microwave background (CMB), baryon acoustic oscillation, and Hubble Space Telescope measurements of the Hubble constant. A nonzero value for the sum of the three active neutrino masses of similar to 0.3 eV is significantly favored at more than three standard deviations when adding the constraints on s 8 and Om from the Planck cluster catalog on galaxy number counts. This preference for nonzero thermal relic masses disappears almost completely in both the thermal axion and massive sterile neutrino schemes. Extra light species contribute to the effective number of relativistic degrees of freedom, parametrized via N-eff. We found that when the recent detection of B mode polarization from the BICEP2 experiment is considered, an analysis of the combined CMB data in the framework of LCDM + r models gives N-eff = 3.90 +/- 0.42, suggesting the presence of an extra relativistic relic at more than 95% C.L. from CMB-only data.  
  Address [Giusarma, Elena; Di Valentino, Eleonora; Melchiorri, Alessandro] Univ Roma La Sapienza, Dept Phys, I-00185 Rome, Italy  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000347985100004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2075  
Permanent link to this record
 

 
Author (down) Giusarma, E.; Corsi, M.; Archidiacono, M.; de Putter, R.; Melchiorri, A.; Mena, O.; Pandolfi, S. url  doi
openurl 
  Title Constraints on massive sterile neutrino species from current and future cosmological data Type Journal Article
  Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 83 Issue 11 Pages 115023 - 10pp  
  Keywords  
  Abstract Sterile massive neutrinos are a natural extension of the standard model of elementary particles. The energy density of the extra sterile massive states affects cosmological measurements in an analogous way to that of active neutrino species. We perform here an analysis of current cosmological data and derive bounds on the masses of the active and the sterile neutrino states, as well as on the number of sterile states. The so-called (3 + 2) models, with three sub-eV active massive neutrinos plus two sub-eV massive sterile species, is well within the 95% CL allowed regions when considering cosmological data only. If the two extra sterile states have thermal abundances at decoupling, big bang nucleosynthesis bounds compromise the viability of (3 + 2) models. Forecasts from future cosmological data on the active and sterile neutrino parameters are also presented. Independent measurements of the neutrino mass from tritium beta-decay experiments and of the Hubble constant could shed light on sub-eV massive sterile neutrino scenarios.  
  Address [Giusarma, Elena; de Putter, Roland; Mena, Olga] Univ Valencia, CSIC, IFIC, Valencia 46071, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000292039800003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 660  
Permanent link to this record
 

 
Author (down) Giusarma, E.; Archidiacono, M.; de Putter, R.; Melchiorri, A.; Mena, O. url  doi
openurl 
  Title Sterile neutrino models and nonminimal cosmologies Type Journal Article
  Year 2012 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 85 Issue 8 Pages 083522 - 9pp  
  Keywords  
  Abstract Cosmological measurements are affected by the energy density of massive neutrinos. We extend here a recent analysis of current cosmological data to nonminimal cosmologies. Several possible scenarios are examined: a constant w not equal -1 dark energy equation of state, a nonflat universe, a time-varying dark energy component and coupled dark matter-dark energy universes or modified gravity scenarios. When considering cosmological data only, (3 + 2) massive neutrino models with similar to 0.5 eV sterile species are allowed at 95% confidence level. This scenario has been shown to reconcile reactor, LSND and MiniBooNE positive signals with null results from other searches. Big bang nucleosynthesis bounds could compromise the viability of (3 + 2) models if the two sterile species are fully thermalized states at decoupling.  
  Address [Giusarma, Elena; de Putter, Roland; Mena, Olga] Univ Valencia CSIC, IFIC, Valencia 46071, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000303118100002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 984  
Permanent link to this record
 

 
Author (down) Giare, W.; Renzi, F.; Mena, O.; Di Valentino, E.; Melchiorri, A. url  doi
openurl 
  Title Is the Harrison-Zel'dovich spectrum coming back? ACT preference for n(s) similar to 1 and its discordance with Planck Type Journal Article
  Year 2023 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal Mon. Not. Roy. Astron. Soc.  
  Volume 521 Issue 2 Pages 2911-2918  
  Keywords cosmological parameters; inflation; cosmology: observations; cosmology: theory  
  Abstract The Data Release 4 of the Atacama Cosmology Telescope (ACT) shows an agreement with an Harrison-Zel'dovich primordial spectrum (n(s) = 1.009 +/- 0.015), introducing a tension with a significance of 99.3 per cent Confidence Level (CL) with the results from the Planck satellite. The discrepancy on the value of the scalar spectral index is neither alleviated with the addition of large scale structure information nor with the low multipole polarization data. We discuss possible avenues to alleviate the tension relying on either neglecting polarization measurements from ACT or in extending different sectors of the theory.  
  Address [Giare, William] Ctr Nazl INFN Studi Avanzati, Galileo Galileo Inst Theoret Phys, Largo Enr Fermi 2, I-50125 Florence, Italy, Email: william.giare@gmail.com  
  Corporate Author Thesis  
  Publisher Oxford Univ Press Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000957248500013 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5510  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva