Zhang, S. C., Duan, M. Y., Lyu, W. T., Wang, G. Y., Zhu, J. Y., & Wang, E. (2024). Explore the properties of Λ(1670) in the Cabibbo-favored process Λc+ → p K- π+. Eur. Phys. J. C, 84(12), 1253–8pp.
Abstract: Recently, the Belle and LHCb Collaborations have measured the Lambda c+-> pK-pi+ invariant mass distribution, which shows a clear cusp structure around the eta Lambda threshold. In this work, we have analyzed this process by considering the triangle mechanism and the S-wave pseudoscalar meson-octet baryon interactions within the chiral unitary approach, which dynamically generates the Lambda(1670). Our results are in good agreement with the Belle measurements, which implies that the cusp structure around eta Lambda threshold could be associated with the Lambda(1670) with the molecular nature.
|
Yue, Z. et al, Algora, A., & Nacher, E. (2024). Magnetic moments of thallium isotopes in the vicinity of magic N=126. Phys. Lett. B, 849, 138452–7pp.
Abstract: The magnetic dipole moments (mu) of Tl-209(g)(N =128) and Tl-207(m)(N = 126) have been measured for the first time using the in -source laser resonance -ionization spectroscopy technique with the Laser Ion Source and Trap (LIST) at ISOLDE (CERN). The application of the LIST suppresses the usually overwhelming background of the isobaric francium isotopes and allows access to heavy thallium isotopes with >207. The self -consistent theory of finite Fermi systems based on the energy density functional by Fayans et al. well describes the N dependence of μfor 1/2(+) thallium ground states, as well as μfor the 11/2(-) isomeric states in europium, gold and thallium isotopes. The inclusion of particle-vibration coupling leads to a better agreement between the theory and experiment for mu(Tl-g , I-pi = 1/2(+)). It is shown that beyond mean-field contributions tocannot be neglected at least for thallium isotopes with I-pi = 1/2(+).
|
Yu, J. J., Mollaebrahimi, A., Ayet, S., Dickel, T., Plass, W. R., Wilsenach, H., et al. (2024). A compact ion source combining electron-impact and thermal ionization for multiple-reflection time-of-flight mass spectrometry. Rev. Sci. Instrum., 95(8), 083309–7pp.
Abstract: A compact ion source combining electron impact and thermal ionization has been developed and commissioned in two Multiple-Reflection Time-Of-Flight Mass Spectrometer (MR-TOF-MS) setups at the Fragment Separator Ion Catcher at the GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, Germany, and at TRIUMF's Ion Trap for Atomic and Nuclear science at TRIUMF Canada's particle accelerator center, Vancouver, Canada. The ion source is notable for its compact dimensions of 50 mm in height and 68 mm in diameter. The ion source is currently in daily operation at both facilities. Design, simulations, and results of combining ions from thermal and electron-impact ionization of different gases (perfluoropropane and sulfur hexafluoride) are presented in this work. The systematic effects of heating power on the thermal source were studied in detail. The source has demonstrated stable and long-term production of reference ions over a wide mass range for the MR-TOF-MS. This versatile ion source has also been used to optimize and investigate the transport of ions with different chemical reactivity and ionization potentials.
|
Yeung, T. T. et al, Morales, A. I., Tain, J. L., Alcala, G., Algora, A., Agramunt, J., et al. (2024). First Exploration of Monopole-Driven Shell Evolution above the N=126 Shell Closure: New Millisecond Isomers in Tl-213 and Tl-215. Phys. Rev. Lett., 133(7), 072501–7pp.
Abstract: Isomer spectroscopy of heavy neutron-rich nuclei beyond the N = 126 closed shell has been performed for the first time at the Radioactive Isotope Beam Factory of the RIKEN Nishina Center. New millisecond isomers have been identified at low excitation energies, 985.3(19) keV in Tl-213 and 874(5) keV in Tl-215. The measured half-lives of 1.34(5) ms in Tl-213 and 3.0(3) ms in Tl-215 suggest spins and parities 11/2(-) with the single proton-hole configuration pi h(11/2) as leading component. They are populated via E1 transitions by the decay of higher-lying isomeric states with proposed spin and parity 17/2(+), interpreted as arising from a single pi s(1/2) proton hole coupled to the 8(+) seniority isomer in the PbA + 1 cores. The lowering of the 11/2(-) states is ascribed to an increase of the pi h(11/2) proton effective single-particle energy as the second nu g(9/2) orbital is filled by neutrons, owing to a significant reduction of the proton-neutron monopole interaction between the pi h(11/2) and nu g(9/2) orbitals. The new ms isomers provide the first experimental observation of shell evolution in the almost unexplored N > 126 nuclear region below doubly magic Pb-208.
|
Yaneva, A. et al, & Algora, A. (2024). The shape of the Tz =+1 nucleus 94Pd and the role of proton-neutron interactions on the structure of its excited states. Phys. Lett. B, 855, 138805–7pp.
Abstract: Reduced transition probabilities have been extracted between excited, yrast states in the N = Z + 2 nucleus Pd-94. The transitions of interest were observed following decays of the I-pi = 14(+), E-x = 2129-keV isomeric state, which was populated following the projectile fragmentation of a Xe-124 primary beam at the GSI Helmholtzzentrum fur Schwerionenforschung accelerator facility as part of FAIR Phase-0. Experimental information regarding the reduced E2 transition strengths for the decays of the yrast 8(+) and 6(+) states was determined following isomer-delayed E-gamma 1 – E-gamma 2 – Delta T-2,T-1 coincidence method, using the LaBr3(Ce)-based FATIMA fast-timing coincidence gamma-ray array, which allowed direct determination of lifetimes of states in Pd-94 using the Generalized Centroid Difference (GCD) method. The experimental value for the half-life of the yrast 8(+) state of 755(106) ps results in a reduced transition probability of B(E2:8(+)-> 6(+)) = 205(-25)(+34) e(2) fm(4), which enables a precise verification of shell-model calculations for this unique system, lying directly between the N = Z line and the N = 50 neutron shell closure. The determined B(E2) value provides an insight into the purity of (g(9/2))(n) configurations in competition with admixtures from excitations between the (lower) N = 3pf and (higher) N = 4gds orbitals for the first time. The results indicate weak collectivity expected for near-zero quadrupole deformation and an increasing importance of the T = 0 proton-neutron interaction at N = 48.
|