|   | 
Details
   web
Records
Author (down) Morisi, S.; Peinado, E.
Title Admixture of quasi-Dirac and Majorana neutrinos with tri-bimaximal mixing Type Journal Article
Year 2011 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 701 Issue 4 Pages 451-457
Keywords Neutrinoless double beta decay; Neutrino masses and mixings; Flavor symmetries; Tri-bimaximal mixing; Neutrino hierarchy; Discrete symmetries
Abstract We propose a realization of the so-called bimodal/schizophrenic model proposed recently. We assume 54, the permutation group of four objects as flavor symmetry giving tri-bimaximal lepton mixing at leading order. In these models the second massive neutrino state is assumed quasi-Dirac and the remaining neutrinos are Majorana states. In the case of inverse mass hierarchy, the lower bound on the neutrinoless double beta decay parameter m(ee) is about two times that of the usual lower bound, within the range of sensitivity of the next generation of experiments.
Address [Morisi, S; Peinado, E] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, E-46071 Valencia, Spain, Email: morisi@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000292994100011 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 700
Permanent link to this record
 

 
Author (down) Merle, A.; Platscher, M.; Rojas, N.; Valle, J.W.F.; Vicente, A.
Title Consistency of WIMP Dark Matter as radiative neutrino mass messenger Type Journal Article
Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 07 Issue 7 Pages 013 - 17pp
Keywords Beyond Standard Model; Renormalization Group; Neutrino Physics; Discrete Symmetries
Abstract The scotogenic scenario provides an attractive approach to both Dark Matter and neutrino mass generation, in which the same symmetry that stabilises Dark Matter also ensures the radiative seesaw origin of neutrino mass. However the simplest scenario may suffer from inconsistencies arising from the spontaneous breaking of the underlying Z(2) symmetry. Here we show that the singlet-triplet extension of the simplest model naturally avoids this problem due to the presence of scalar triplets neutral under the Z(2) which affect the evolution of the couplings in the scalar sector. The scenario offers good prospects for direct WIMP Dark Matter detection through the nuclear recoil method.
Address [Merle, Alexander] Max Planck Inst Phys & Astrophys, Werner Heisenberg Inst, Fohringer Ring 6, D-80805 Munich, Germany, Email: amerle@mpp.mpg.de;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000379170300005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2748
Permanent link to this record
 

 
Author (down) Meloni, D.; Morisi, S.; Peinado, E.
Title Neutrino phenomenology and stable dark matter with A(4) Type Journal Article
Year 2011 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 697 Issue 4 Pages 339-342
Keywords Flavor symmetries; Dark matter; Neutrino masses; Lepton mixing; Discrete symmetries; Neutrino less double beta decay
Abstract We present a model based on the A(4) non-Abelian discrete symmetry leading to a predictive five-parameter neutrino mass matrix and providing a stable dark matter candidate. We found an interesting correlation among the atmospheric and the reactor angles which predicts theta(23) similar to pi/4for very small reactor angle and deviation from maximal atmospheric mixing for large theta(13). Only normal neutrino mass spectrum is possible and the effective mass entering the neutrinoless double beta decay rate is constrained to be vertical bar m(ee)vertical bar > 4 x 10(-4) eV.
Address [Morisi, S.; Peinado, E.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, E-46071 Valencia, Spain, Email: davide.meloni@physik.uni-wuerzburg.de
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes ISI:000288300400012 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 544
Permanent link to this record
 

 
Author (down) Flores-Tlalpa, A.; Lopez Castro, G.; Roig, P.
Title Five-body leptonic decays of muon and tau lepton Type Journal Article
Year 2016 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages 185 - 21pp
Keywords CP violation; Discrete Symmetries; Effective field theories; Precision QED
Abstract We study the five-body decays u(-) -> e(-)e(+)e(-)nu u (nu) over bar (e) and tau(-) -> l(-)l'+l'-nu(tau)(nu) over bar (l) for l, l' = e, u within the Standard Model (SM) and in a general effective field theory description of the weak interactions at low energies. We compute the branching ratios and compare our results with two previous – mutually discrepan – SM calculations. By assuming a general structure for the weak currents we derive the expressions for the energy and angular distributions of the three charged leptons when the decaying lepton is polarized, which will be useful in precise tests of the weak charged current at Belle II. In these decays, leptonic T-odd correlations in triple products of spin and momenta – which may signal time reversal violation in the leptonic sector – are suppressed by the tiny neutrino masses. Therefore, a measurement of such T-violating observables would be associated to neutrinoless lepton flavor violating (LFV) decays, where this effect is not extremely suppressed. We also study the backgrounds that the SM five-lepton lepton decays constitute to searches of LFV L- -> ? l(-)l'+l'(-) decays. Searches at high values of the invariant mass of the l'(+)l'(-) pair look the most convenient way to overcome the background.
Address [Flores-Tlalpa, A.] Univ Nacl Autonoma Mexico, Inst Fis, Apartado Postal 20-364, Mexico City 01000, DF, Mexico, Email: alain@fisica.unam.mx;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000411265800003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3501
Permanent link to this record
 

 
Author (down) Drewes, M.; Georis, Y.; Hagedorn, C.; Klaric, J.
Title Low-scale leptogenesis with flavour and CP symmetries Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 12 Issue 12 Pages 044 - 113pp
Keywords Baryo-and Leptogenesis; Discrete Symmetries; Flavour Symmetries; Sterile or Heavy Neutrinos
Abstract We consider a type-I seesaw framework endowed with a flavour symmetry, belonging to the series of non-abelian groups increment (3 n(2)) and increment (6 n(2)), and a CP symmetry. Breaking these symmetries in a non-trivial way results in the right-handed neutrinos being degenerate in mass up to possible (further symmetry-breaking) splittings kappa and lambda, while the neutrino Yukawa coupling matrix encodes the entire flavour structure in the neutrino sector. For a fixed combination of flavour and CP symmetry and residual groups, this matrix contains five real free parameters. Four of them are determined by the light neutrino mass spectrum and by accommodating experimental data on lepton mixing well, while the angle theta(R) is related to right-handed neutrinos. We scrutinise for all four lepton mixing patterns, grouped into Case 1) through Case 3 b.1), the potential to generate the baryon asymmetry of the Universe through low-scale leptogenesis numerically and analytically. The main results are: a) the possible correlation of the baryon asymmetry and the Majorana phases, encoded in the Pontecorvo-Maki-Nakagawa-Sakata mixing matrix, in certain instances; b) the possibility to generate the correct amount of baryon asymmetry for vanishing splittings kappa and lambda among the right-handed neutrinos as well as for large kappa, depending on the case and the specific choice of group theory parameters; c) the chance to produce sufficient baryon asymmetry for large active-sterile mixing angles, enabling direct experimental tests at current and future facilities, if theta(R) is close to a special value, potentially protected by an enhanced residual symmetry. We elucidate these results with representative examples of flavour and CP symmetries, which all lead to a good agreement with the measured values of the lepton mixing angles and, possibly, the current indication of the CP phase delta. We identify the CP-violating combinations relevant for low-scale leptogenesis, and show that the parametric dependence of the baryon asymmetry found in the numerical study can be understood well with their help.
Address [Drewes, M.; Georis, Y.; Klaric, J.] Catholic Univ Louvain, Ctr Cosmol Particle Phys & Phenomenol, B-1348 Louvain La Neuve, Belgium, Email: marco.drewes@uclouvain.be;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000898830800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5435
Permanent link to this record