|   | 
Details
   web
Records
Author (down) Pich, A.; Rosell, I.; Sanz-Cillero, J.J.
Title The vector form factor at the next-to-leading order in 1/N-C: chiral couplings L-9(mu) and C-88(mu)-C-90(mu) Type Journal Article
Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 02 Issue 2 Pages 109 - 23pp
Keywords 1/N Expansion; Chiral Lagrangians; QCD
Abstract Using the Resonance Chiral Theory Lagrangian, we perform a calculation of the vector form factor of the pion at the next-to-leading order (NLO) in the 1/N-C expansion. Imposing the correct QCD short-distance constraints, one fixes the amplitude in terms of the pion decay constant F and resonance masses. Its low momentum expansion determines then the corresponding O(p(4)) and O(p(6)) low-energy chiral couplings at NLO, keeping control of their renormalization scale dependence. At mu(0) = 0.77 GeV, we obtain L-9(mu(0)) = (7.9 +/- 0.4).10(-3) and C-88(mu(0)) – C-90(mu(0)) = (-4.6 +/- 0.4).10(-5).
Address [Pich, Antonio; Rosell, Ignasi] Univ Valencia CSIC, Dept Fis Teor, IFIC, E-46071 Valencia, Spain, Email: Antonio.Pich@uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes ISI:000287939200009 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 620
Permanent link to this record
 

 
Author (down) Pich, A.; Rosell, I.; Sanz-Cillero, J.J.
Title One-loop calculation of the oblique S parameter in higgsless electroweak models Type Journal Article
Year 2012 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 08 Issue 8 Pages 106 - 34pp
Keywords Higgs Physics; Beyond Standard Model; Chiral Lagrangians; Technicolor and Composite Models
Abstract We present a one-loop calculation of the oblique S parameter within Higgsless models of electroweak symmetry breaking and analyze the phenomenological implications of the available electroweak precision data. We use the most general effective Lagrangian with at most two derivatives, implementing the chiral symmetry breaking SU(2)(L) circle times SU(2)(R) -> SU(2)(L+R) with Goldstones, gauge bosons and one multiplet of vector and axial-vector massive resonance states. Using the dispersive representation of Peskin and Takeuchi and imposing the short-distance constraints dictated by the operator product expansion, we obtain S at the NLO in terms of a few resonance parameters. In asymptotically-free gauge theories, the final result only depends on the vector-resonance mass and requires M-V > 1.8TeV (3.8TeV) to satisfy the experimental limits at the 3 sigma (1 sigma) level; the axial state is always heavier, we obtain M-A > 2.5TeV (6.6TeV) at 3 sigma (1 sigma). In strongly-coupled models, such as walking or conformal technicolour, where the second Weinberg sum rule does not apply, the vector and axial couplings are not determined by the short-distance constraints; but one can still derive a lower bound on S, provided the hierarchy M-V < M-A remains valid. Even in this less constrained situation, we find that in order to satisfy the experimental limits at 3 sigma one needs M-V,M-A > 1.8TeV.
Address [Pich, A.; Rosell, I.] Univ Valencia, CSIC, IFIC, Dept Fis Teor, E-46071 Valencia, Spain, Email: antonio.pich@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1126-6708 ISBN Medium
Area Expedition Conference
Notes WOS:000309883200063 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1217
Permanent link to this record
 

 
Author (down) Pich, A.; Rosell, I.; Sanz-Cillero, J.J.
Title Oblique S and T constraints on electroweak strongly-coupled models with a light Higgs Type Journal Article
Year 2014 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 01 Issue 1 Pages 157 - 35pp
Keywords Higgs Physics; Beyond Standard Model; Chiral Lagrangians; Technicolor and Composite Models
Abstract Using a general effective Lagrangian implementing the chiral symmetry breaking SU(2)(L) circle times SU(2)(R) -> SU(2)(L+R), we present a one-loop calculation of the oblique S and T parameters within electroweak strongly-coupled models with a light scalar. Imposing a proper ultraviolet behaviour, we determine S and T at next-to-leading order in terms of a few resonance parameters. The constraints from the global fit to electroweak precision data force the massive vector and axial-vector states to be heavy, with masses above the TeV scale, and suggest that the W+W- and and ZZ couplings of the Higgs-like scalar should be close to the Standard Model value. Our findings are generic, since they only rely on soft requirements on the short-distance properties of the underlying strongly-coupled theory, which are widely satisfied in more specific scenarios.
Address [Pich, A.; Rosell, I.] Univ Valencia, CSIC, IFIC, Dept Fis Teor, E-46071 Valencia, Spain, Email: antonio.pich@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000346240600006 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 2059
Permanent link to this record
 

 
Author (down) Pich, A.; Rosell, I.; Santos, J.; Sanz-Cillero, J.J.
Title Fingerprints of heavy scales in electroweak effective Lagrangians Type Journal Article
Year 2017 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 04 Issue 4 Pages 012 - 60pp
Keywords Beyond Standard Model; Chiral Lagrangians; Higgs Physics; Technicolor and Composite Models
Abstract The couplings of the electroweak effective theory contain information on the heavy-mass scales which are no-longer present in the low-energy Lagrangian. We build a general effective Lagrangian, implementing the electroweak chiral symmetry breaking SU(2)(L) circle times SU(2)(R) -> SU(2)(L+R), which couples the known particle fields to heavier states with bosonic quantum numbers J(P) = 0(+/-) and 1(+/-). We consider colour-singlet heavy fields that are in singlet or triplet representations of the electroweak group. Integrating out these heavy scales, we analyze the pattern of low-energy couplings among the light fields which are generated by the massive states. We adopt a generic non-linear realization of the electroweak symmetry breaking with a singlet Higgs, without making any assumption about its possible doublet structure. Special attention is given to the different possible descriptions of massive spin-1 fields and the differences arising from naive implementations of these formalisms, showing their full equivalence once a proper short-distance behaviour is required.
Address [Pich, Antonio; Santos, Joaquin] Univ Valencia, CSIC, IFIC, Dept Fis Teor, Apt Correus 22085, E-46071 Valencia, Spain, Email: pich@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000398449400004 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3074
Permanent link to this record
 

 
Author (down) Pich, A.; Rodriguez-Sanchez, A.
Title SU(3) analysis of four-quark operators: K -> pi pi and vacuum matrix elements Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 06 Issue 6 Pages 005 - 43pp
Keywords Chiral Lagrangians; CP violation; Effective Field Theories; Kaon Physics
Abstract Hadronic matrix elements of local four-quark operators play a central role in non-leptonic kaon decays, while vacuum matrix elements involving the same kind of operators appear in inclusive dispersion relations, such as those relevant in tau -decay analyses. Using an SU(3)(L) circle times SU(3)(R) decomposition of the operators, we derive generic relations between these matrix elements, extending well-known results that link observables in the two different sectors. Two relevant phenomenological applications are presented. First, we determine the electroweak-penguin contribution to the kaon CP-violating ratio epsilon '/epsilon, using the measured hadronic spectral functions in tau decay. Second, we fit our SU(3) dynamical parameters to the most recent lattice data on K -> pi pi matrix elements. The comparison of this numerical fit with results from previous analytical approaches provides an interesting anatomy of the Delta I = 1/2 enhancement, confirming old suggestions about its underlying dynamical origin.
Address [Pich, A.] Univ Valencia, CSIC, IFIC, Dept Fis Teor, Edifici Inst Paterna,Apt Correus 22085, E-46071 Valencia, Spain, Email: Antonio.Pich@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000762295200001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5148
Permanent link to this record