|   | 
Details
   web
Records
Author (down) Valero, A.; Castillo Gimenez, V.; Ferrer, A.; Gonzalez, V.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Sanchis, E.; Solans, C.; Torres, J.; Valls Ferrer, J.A.
Title The ATLAS tile calorimeter ROD injector and multiplexer board Type Journal Article
Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 629 Issue 1 Pages 74-79
Keywords LHC; ATLAS; Calorimeter; Data acquisition; FPGA; Bit error rate
Abstract The ATLAS Tile Calorimeter is a sampling detector composed by cells made of iron-scintillator tiles. The calorimeter cell signals are digitized in the front-end electronics and transmitted to the Read-Out Drivers (RODs) at the first level trigger rate. The ROD receives triggered data from up to 9856 channels and provides the energy, phase and quality factor of the signals to the second level trigger. The back-end electronics is divided into four partitions containing eight RODs each. Therefore, a total of 32 RODs are used to process and transmit the data of the TileCal detector. In order to emulate the detector signals in the production and commissioning of ROD modules a board called ROD Injector and Multiplexer Board (RIMBO) was designed. In this paper, the RIMBO main functional blocks, PCB design and the different operation modes are described. It is described the crucial role of the board within the TileCal ROD test-bench in order to emulate the front-end electronics during the validation of ROD boards as well as during the evaluation of the ROD signal reconstruction algorithms. Finally, qualification and performance results for the injection operation mode obtained during the Tile Calorimeter ROD production tests are presented.
Address [Valero, A.; Castillo, V.; Ferrer, A.; Hernandez, Y.; Higon, E.; Solans, C.; Valls, J. A.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia 46071, Spain, Email: alberto.valero@cern.ch
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes ISI:000287556100012 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 555
Permanent link to this record
 

 
Author (down) Ullan, M.; Benitez, V.; Quirion, D.; Zabala, M.; Pellegrini, G.; Lozano, M.; Lacasta, C.; Soldevila, U.; Garcia, C.; Fadeyev, V.; Wortman, J.; DeFilippis, J.; Shumko, M.; Grillo, A.A.; Sadrozinski, H.F.W.
Title Low-resistance strip sensors for beam-loss event protection Type Journal Article
Year 2014 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 765 Issue Pages 252-257
Keywords Silicon radiation detectors; Strip sensors; Punch through protection; Beam loss; HL-LHC; ATLAS Upgrade
Abstract AC coupled silicon strip sensors can be damaged in case of a beam loss due to the possibility of a large charge accumulation in the bulk, developing very high voltages across the coupling capacitors which can destroy them. Punch-through structures are currently used to avoid this problem helping to evacuate the accumulated charge as large voltages are developing. Nevertheless, previous experiments, performed with laser pulses, have shown that these structures can become ineffective in relatively long strips. The large value of the implant resistance can effectively isolate the “far” end of the strip from the punchthrough structure leading to large voltages. We present here our developments to fabricate lowresistance strip sensors to avoid this problem. The deposition of a conducting material in contact with the implants drastically reduces the strip resistance, assuring the effectiveness of the punch-through structures. First devices have been fabricated with this new technology. Initial results with laser tests show the expected reduction in peak voltages on the low resistivity implants. Other aspects of the sensor performance, including the signal formation, are not affected by the new technology.
Address [Ullan, M.; Benitez, V.; Quirion, D.; Zabala, M.; Pellegrini, G.; Lozano, M.] CSIC, Ctr Nacl Microelect IMB CNM, Barcelona 08193, Spain, Email: Miguel.Ullan@imb-cnm.csic.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000344621000048 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2003
Permanent link to this record
 

 
Author (down) Ruhr, F. et al; Escobar, C.; Miñano, M.
Title Testbeam studies of barrel and end-cap modules for the ATLAS ITk strip detector before and after irradiation Type Journal Article
Year 2020 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 979 Issue Pages 164430 - 6pp
Keywords Particle physics; Tracking detectors; ATLAS; HL-LHC; Test beam
Abstract In order to cope with the occupancy and radiation doses expected at the High-Luminosity LHC, the ATLAS experiment will replace its Inner Detector with an all-silicon Inner Tracker (ITk), consisting of pixel and strip subsystems. In the last two years, several prototype ITk strip modules have been tested using beams of high energy electrons produced at the DESY-II testbeam facility. Tracking was provided by EUDET telescopes. The modules tested are built from two sensor types: the rectangular ATLAS17LS, which will be used in the outer layers of the central barrel region of the detector, and the annular ATLAS12EC, which will be used in the innermost ring (R0) of the forward region. Additionally, a structure with two RO modules positioned back-to-back has been measured, demonstrating space point reconstruction using the stereo angle of the strips. Finally, one barrel and one RO module have been measured after irradiation to 40% beyond the expected end-of-lifetime fluence. The data obtained allow for thorough tests of the module performance, including charge collection, noise occupancy, detection efficiency, and tracking performance. The results give confidence that the ITk strip detector will meet the requirements of the ATLAS experiment.
Address [Ruehr, F.; Argos, C. Garcia; Hauser, M.; Moos, F.; Rodriguez, A. Rodriguez; Sperlich, D.; Wiik-Fuchs, L.] Albert Ludwigs Univ Freiburg, Phys Inst, Freiburg, Germany, Email: frederik.ruehr@cern.ch
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000573295200013 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4548
Permanent link to this record
 

 
Author (down) Moles-Valls, R.
Title Alignment of the ATLAS Inner Detector with proton-proton collision data Type Journal Article
Year 2011 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 650 Issue 1 Pages 235-239
Keywords ATLAS; Inner detector; Tracking system; Alignment
Abstract ATLAS is a multipurpose experiment that records the products of the LHC collisions. In order to reconstruct the trajectories of the charged particles produced in these collisions. ATLAS has an internal tracking system made of silicon planar sensors (pixels and micro-strips) and drift-tube based detectors; both together, they constitute the ATLAS Inner Detector. The alignment of the ATLAS tracking system requires the determination of their almost 36,000 degrees-of-freedom (DOF) with high accuracy. Thus, the demanded precision for the alignment of the pixel and micro-strip sensors is below 10 μm. As alignment algorithms are based on the minimization of the track-hit residuals, a linear system with a large number of DOF has to be solved. The alignment results of the ATLAS tracker using data recorded during cosmic commissioning phases in 2008 and 2009 and the LHC start up run in 2009 will be presented. Moreover recent 7 TeV data collected during 2010 run have been used to study the detector performance. These studies reveal that the detector is aligned with a precision high enough to cope with the requirements.
Address [Moles-Valls, R] IFIC CSIC UV Valencia, Valencia, Spain, Email: Regina.Moles@ific.uv.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000295106500050 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ elepoucu @ Serial 767
Permanent link to this record
 

 
Author (down) Miyagawa, P.S. et al; Bernabeu, P.; Lacasta, C.; Solaz, C.; Soldevila, U.
Title Analysis of the results from Quality Control tests performed on ATLAS18 Strip Sensors during on-going production Type Journal Article
Year 2024 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 1064 Issue Pages 169457 - 9pp
Keywords HL-LHC; ATLAS; ITk; Strip sensors
Abstract The ATLAS experiment will replace its existing Inner Detector with the new all -silicon Inner Tracker (ITk) to cope with the operating conditions of the forthcoming high -luminosity phase of the LHC (HL-LHC). The outer regions of the ITk will be instrumented with similar to 18000 ATLAS18 strip sensors fabricated by Hamamatsu Photonics K.K. (HPK). With the launch of full-scale sensor production in 2021, the ITk strip sensor community has undertaken quality control (QC) testing of these sensors to ensure compliance with mechanical and electrical specifications agreed with HPK. The testing is conducted at seven QC sites on each of the monthly deliveries of similar to 500 sensors. This contribution will give an overview of the QC procedures and analysis; the tests most likely to determine pass/fail for a sensor are IV, long-term leakage current stability, full strip test and visual inspection. The contribution will then present trends in the results and properties following completion of similar to 60% of production testing. It will also mention challenges overcome through collaborative efforts with HPK during the early phases of production. With less than 5% of sensors rejected by QC testing, the overall production quality has been very good.
Address [Miyagawa, P. S.; Beck, G. A.; Bevan, A. J.; Chen, Z.; Dawson, I.; Zenz, S. C.] Queen Mary Univ London, Particle Phys Res Ctr, GO Jones Bldg, Mile End Rd, London E14NS, England, Email: paul.miyagawa@cern.ch
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:001249611300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6158
Permanent link to this record