|   | 
Details
   web
Records
Author (down) de Anda, F.J.; Medina, O.; Valle, J.W.F.; Vaquera-Araujo, C.A.
Title Scotogenic Majorana neutrino masses in a predictive orbifold theory of flavor Type Journal Article
Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 105 Issue 5 Pages 055030 - 12pp
Keywords
Abstract The use of extra space-time dimensions provides a promising approach to the flavor problem. The chosen compactification of a 6-dimensional orbifold implies a remnant family symmetry A4. This makes interesting predictions for quark and lepton masses, for neutrino oscillations and neutrinoless double beta decay, providing also a very good global description of all flavor observables. Due to an auxiliary Z4 symmetry, we implement a scotogenic Majorana neutrino mass generation mechanism with a viable WIMP dark matter candidate.
Address [de Anda, Francisco J.] Tepatitlans Inst Theoret Studies, Tepatitlan De Morelos, Jalisco, Mexico, Email: fran@tepaits.mx;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000783936600003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5202
Permanent link to this record
 

 
Author (down) de Anda, F.J.; Medina, O.; Valle, J.W.F.; Vaquera-Araujo, C.A.
Title Revamping Kaluza-Klein dark matter in an orbifold theory of flavor Type Journal Article
Year 2023 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 108 Issue 3 Pages 035046 - 11pp
Keywords
Abstract We suggest a common origin for dark matter, neutrino mass and family symmetry within the orbifold theory proposed in [Phys. Lett. B 801, 135195 (2020); Phys. Rev. D 101, 116012 (2020)]. Flavor physics is described by an A(4) family symmetry that results naturally from compactification. Weakly interacting massive particle dark matter emerges from the first Kaluza-Klein excitation of the same scalar that drives family symmetry breaking and neutrino masses through the inverse seesaw mechanism. In addition to the “golden” quark-lepton mass relation and predictions for 0 nu beta beta decay, the model provides a good global description of all flavor observables.
Address [de Anda, Francisco J.] Tepatitlans Inst Theoret Studies, Tepatitlan De Morelos 47600, Jalisco, Mexico, Email: fran@tepaits.mx;
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:001162626800006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5954
Permanent link to this record
 

 
Author (down) Chen, M.C.; Li, X.Q.; Liu, X.G.; Medina, O.; Ratz, M.
Title Modular invariant holomorphic observables Type Journal Article
Year 2024 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 852 Issue Pages 138600 - 13pp
Keywords
Abstract In modular invariant models of flavor, observables must be modular invariant. The observables discussed so far in the literature are functions of the modulus tau and its conjugate, (tau) over bar. We point out that certain combinations of observables depend only on tau , i.e. are meromorphic, and in some cases even holomorphic functions of tau. These functions, which we dub “invariants” in this Letter, are highly constrained, renormalization group invariant, and allow us to derive many of the models' features without the need for extensive parameter scans. We illustrate the robustness of these invariants in two existing models in the literature based on modular symmetries, Gamma(3) and Gamma(5). We find that, in some cases, the invariants give rise to robust relations among physical observables that are independent of tau. Furthermore, there are instances where additional symmetries exist among the invariants. These symmetries are relevant phenomenologically and may provide a dynamical way to realize symmetries of mass matrices.
Address [Chen, Mu-Chun; Li, Xueqi; Liu, Xiang-Gan; Ratz, Michael] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA, Email: muchunc@uci.edu;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:001221253800001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 6125
Permanent link to this record
 

 
Author (down) Chen, M.C.; King, S.F.; Medina, O.; Valle, J.W.F.
Title Quark-lepton mass relations from modular flavor symmetry Type Journal Article
Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 02 Issue 2 Pages 160 - 28pp
Keywords Discrete Symmetries; Flavour Symmetries; Theories of Flavour
Abstract The so-called Golden Mass Relation provides a testable correlation between charged-lepton and down-type quark masses, that arises in certain flavor models that do not rely on Grand Unification. Such models typically involve broken family symmetries. In this work, we demonstrate that realistic fermion mass relations can emerge naturally in modular invariant models, without relying on ad hoc flavon alignments. We provide a model-independent derivation of a class of mass relations that are experimentally testable. These relations are determined by both the Clebsch-Gordan coefficients of the specific finite modular group and the expansion coefficients of its modular forms, thus offering potential probes of modular invariant models. As a detailed example, we present a set of viable mass relations based on the Gamma 4 approximately equal to S4 symmetry, which have calculable deviations from the usual Golden Mass Relation.
Address [Chen, Mu-Chun] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA, Email: muchunc@uci.edu;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:001169490600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5981
Permanent link to this record
 

 
Author (down) Centelles Chulia, S.; Cepedello, R.; Medina, O.
Title Absolute neutrino mass scale and dark matter stability from flavour symmetry Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 080 - 23pp
Keywords Discrete Symmetries; Flavour Symmetries; Neutrino Mixing; Particle Nature of Dark Matter
Abstract We explore a simple but extremely predictive extension of the scotogenic model. We promote the scotogenic symmetry Z(2) to the flavour non-Abelian symmetry sigma(81), which can also automatically protect dark matter stability. In addition, sigma(81) leads to striking predictions in the lepton sector: only Inverted Ordering is realised, the absolute neutrino mass scale is predicted to be m(lightest)approximate to 7.5x10(-4) eV and the Majorana phases are correlated in such a way that vertical bar m(ee)vertical bar approximate to 0.018 eV. The model also leads to a strong correlation between the solar mixing angle theta(12) and delta(CP), which may be falsified by the next generation of neutrino oscillation experiments. The setup is minimal in the sense that no additional symmetries or flavons are required.
Address [Chulia, Salvador Centelles] Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany, Email: chulia@mpi-hd.mpg.de;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000867661300002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5387
Permanent link to this record