|   | 
Details
   web
Records
Author (down) Vincent, A.C.; Fernandez Martinez, E.; Hernandez, P.; Mena, O.; Lattanzi, M.
Title Revisiting cosmological bounds on sterile neutrinos Type Journal Article
Year 2015 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 04 Issue 4 Pages 006 - 23pp
Keywords particle physics – cosmology connection; cosmological neutrinos; cosmology of theories beyond the SM
Abstract We employ state-of-the art cosmological observables including supernova surveys and BAO information to provide constraints on the mass and mixing angle of a non-resonantly produced sterile neutrino species, showing that cosmology can effectively rule out sterile neutrinos which decay between BBN and the present day. The decoupling of an additional heavy neutrino species can modify the time dependence of the Universe's expansion between BBN and recombination and, in extreme cases, lead to an additional matter-dominated period; while this could naively lead to a younger Universe with a larger Hubble parameter, it could later be compensated by the extra radiation expected in the form of neutrinos from sterile decay. However, recombination-era observables including the Cosmic Microwave Background (CMB), the shift parameter R-CMB and the sound horizon r(s) from Baryon Acoustic Oscillations (BAO) severely constrain this scenario. We self-consistently include the full time-evolution of the coupled sterile neutrino and standard model sectors in an MCMC, showing that if decay occurs after BBN, the sterile neutrino is essentially bounded by the constraint sin(2) theta less than or similar to 0.026(m(s)/eV)(-2).
Address [Vincent, Aaron C.] Univ Durham, Dept Phys, IPPP, Durham DH1 3LE, England, Email: aaron.vincent@durham.ac.uk;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000355742500007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2261
Permanent link to this record
 

 
Author (down) Semikoz, V.B.; Sokoloff, D.D.; Valle, J.W.F.
Title Lepton asymmetries and primordial hypermagnetic helicity evolution Type Journal Article
Year 2012 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 06 Issue 6 Pages 008 - 12pp
Keywords Magnetohydrodynamics; galactic magnetic fields; cosmic magnetic fields theory; particle physics – cosmology connection
Abstract The hypermagnetic helicity density at the electroweak phase transition (EWPT) exceeds many orders of magnitude the galactic magnetic helicity density. Together with previous magnetic helicity evolution calculations after the EWPT and hypermagnetic helicity conversion to the magnetic one at the EWPT, the present calculation completes the description of the evolution of this important topological feature of cosmological magnetic fields. It suggests that if the magnetic field seeding the galactic dynamo has a primordial origin, it should be substantially helical. This should be taken into account in scenarios of galactic magnetic field evolution with a cosmological seed.
Address [Semikoz, V. B.; Valle, J. W. F.] Univ Valencia, CSIC, Inst Fis Corpuscular, AHEP Grp, E-46071 Valencia, Spain, Email: semikoz@ific.uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000306003500008 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1101
Permanent link to this record
 

 
Author (down) Reig, M.; Valle, J.W.F.; Yamada, M.
Title Light majoron cold dark matter from topological defects and the formation of boson stars Type Journal Article
Year 2019 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 09 Issue 9 Pages 029 - 25pp
Keywords Cosmic strings; domain walls; monopoles; particle physics – cosmology connection; cosmology of theories beyond the SM; cosmological neutrinos
Abstract We show that for a relatively light majoron (<< 100 eV) non-thermal production from topological defects is an efficient production mechanism. Taking the type I seesaw as benchmark scheme, we estimate the primordial majoron abundance and determine the required parameter choices where it can account for the observed cosmological dark matter. The latter is consistent with the scale of unification. Possible direct detection of light majorons with future experiments such as PTOLEMY and the formation of boson stars from the majoron dark matter are also discussed.
Address [Reig, Mario; Valle, Jose W. F.] Univ Valencia, AHEP Grp, Inst Fis Corpuscular, CSIC, Parc Cient Paterna,Catedrat Jose Beltran 2, E-46980 Paterna, Valencia, Spain, Email: mario.reig@ific.uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000487690100005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4154
Permanent link to this record
 

 
Author (down) PTOLEMY Collaboration (Betti, M.G. et al); Gariazzo, S.; Pastor, S.
Title Neutrino physics with the PTOLEMY project: active neutrino properties and the light sterile case Type Journal Article
Year 2019 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 07 Issue 7 Pages 047 - 31pp
Keywords cosmological neutrinos; neutrino detectors; particle physics – cosmology connection; physics of the early universe
Abstract The PTOLEMY project aims to develop a scalable design for a Cosmic Neutrino Background (CNB) detector, the first of its kind and the only one conceived that can look directly at the image of the Universe encoded in neutrino background produced in the first second after the Big Bang. The scope of the work for the next three years is to complete the conceptual design of this detector and to validate with direct measurements that the non-neutrino backgrounds are below the expected cosmological signal. In this paper we discuss in details the theoretical aspects of the experiment and its physics goals. In particular, we mainly address three issues. First we discuss the sensitivity of PTOLEMY to the standard neutrino mass scale. We then study the perspectives of the experiment to detect the CNB via neutrino capture on tritium as a function of the neutrino mass scale and the energy resolution of the apparatus. Finally, we consider an extra sterile neutrino with mass in the eV range, coupled to the active states via oscillations, which has been advocated in view of neutrino oscillation anomalies. This extra state would contribute to the tritium decay spectrum, and its properties, mass and mixing angle, could be studied by analyzing the features in the beta decay electron spectrum.
Address [Betti, M. G.; Cavoto, G.; Mancini-Terracciano, C.; Mariani, C.; Polosa, A. D.; Rago, I] Univ Roma La Sapienza, Rome, Italy, Email: pabferde@gmail.com;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000478735300006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4097
Permanent link to this record
 

 
Author (down) Pallis, C.
Title Linking Starobinsky-type inflation in no-scale supergravity to MSSM Type Journal Article
Year 2014 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 04 Issue 4 Pages 024 - 31pp
Keywords particle physics – cosmology connection; supersymmetry and cosmology; cosmology of theories beyond the SM; inflation
Abstract A novel realization of the Starobinsky inflationary model within a moderate extension of the Minimal Supersymmetric Standard Model (MSSM) is presented. The proposed superpotential is uniquely determined by applying a continuous R and a Z2 discrete symmetry, whereas the Kahler potential is associated with a no-scale-type SU(54, 1)/ SU(54) x U(1) R X Z2 Kahler manifold. The inflaton is identified with a Higgs-like modulus whose the vacuum expectation value controls the gravitational strength. Thanks to a strong enough coupling (with a parameter CT involved) between the inflaton and the Ricci scalar curvature, inflation can be attained even for subplanckian values of the inflaton with CT >= 76 and the corresponding effective theory being valid up to the Planck scale. The inflationary observables turn out to be in agreement with the current data and the inflaton mass is predicted to be 3 10(3) GeV. At the cost of a relatively small superpotential coupling constant, the model offers also a resolution of the f,t problem of MSSM for CT <= 4500 and gravitino heavier than about 10(4) GeV. Supplementing MSSM by three right-handed neutrinos we show that spontaneously arising couplings between the inflaton and the particle content of MSSM not only ensure a sufficiently low reheating temperature but also support a scenario of non-thermal leptogenesis consistently with the neutrino oscillation parameters.
Address [Pallis, C.] Univ Valencia, CSIC, Dept Fis Teor, E-46100 Burjassot, Spain, Email: kpallis@auth.gr
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000343042800006 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1961
Permanent link to this record
 

 
Author (down) Mosbech, M.R.; Boehm, C.; Hannestad, S.; Mena, O.; Stadler, J.; Wong, Y.Y.Y.
Title The full Boltzmann hierarchy for dark matter-massive neutrino interactions Type Journal Article
Year 2021 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 03 Issue 3 Pages 066 - 31pp
Keywords cosmological perturbation theory; dark matter theory; neutrino properties; particle physics – cosmology connection
Abstract The impact of dark matter-neutrino interactions on the measurement of the cosmological parameters has been investigated in the past in the context of massless neutrinos exclusively. Here we revisit the role of a neutrino-dark matter coupling in light of ongoing cosmological tensions by implementing the full Boltzmann hierarchy for three massive neutrinos. Our tightest 95% CL upper limit on the strength of the interactions, parameterized via u(chi) = sigma(0)/sigma(Th) (m(chi)/100GeV)(-1), is u(chi) <= 3.34 . 10(-4), arising from a combination of Planck TTTEEE data, Planck lensing data and SDSS BAO data. This upper bound is, as expected, slightly higher than previous results for interacting massless neutrinos, due to the correction factor associated with neutrino masses. We find that these interactions significantly relax the lower bounds on the value of sigma 8 that is inferred in the context of Lambda CDM from the Planck data, leading to agreement within 1-2 sigma with weak lensing estimates of sigma 8, as those from KiDS1000. However, the presence of these interactions barely affects the value of the Hubble constant H-0.
Address [Mosbech, Markus R.; Boehm, Celine] Univ Sydney, Sch Phys, Camperdown, NSW 2006, Australia, Email: mmos6302@uni.sydney.edu.au;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000636717400061 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4783
Permanent link to this record
 

 
Author (down) Lopez-Honorez, L.; Mena, O.; Palomares-Ruiz, S.; Villanueva-Domingo, P.; Witte, S.J.
Title Variations in fundamental constants at the cosmic dawn Type Journal Article
Year 2020 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 06 Issue 6 Pages 026 - 25pp
Keywords cosmology of theories beyond the SM; particle physics – cosmology connection; reionization
Abstract The observation of space-time variations in fundamental constants would provide strong evidence for the existence of new light degrees of freedom in the theory of Nature. Robustly constraining such scenarios requires exploiting observations that span different scales and probe the state of the Universe at different epochs. In the context of cosmology, both the cosmic microwave background and the Lyman-a forest have proven to be powerful tools capable of constraining variations in electromagnetism, however at the moment there do not exist cosmological probes capable of bridging the gap between recombination and reionization. In the near future, radio telescopes will attempt to measure the 21 cm transition of neutral hydrogen during the epochs of reionization and the cosmic dawn (and potentially the tail end of the dark ages); being inherently sensitive to electromagnetic phenomena, these experiments will offer a unique perspective on space-time variations of the fine-structure constant and the electron mass. We show here that large variations in these fundamental constants would produce features on the 21 cm power spectrum that may be distinguishable from astrophysical uncertainties. Furthermore, we forecast the sensitivity for the Square Kilometer Array, and show that the 21 cm power spectrum may be able to constrain variations at the level of O(10(-3)).
Address [Lopez-Honorez, Laura] Univ Libre Bruxelles, Serv Phys Theor, CP225, B-1050 Brussels, Belgium, Email: llopezho@ulb.ac.be;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000551875400049 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4473
Permanent link to this record
 

 
Author (down) Lineros, R.A.; Pereira dos Santos, F.A.
Title Inert scalar dark matter in an extra dimension inspired model Type Journal Article
Year 2014 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 10 Issue 10 Pages 059 - 17pp
Keywords dark matter theory; extra dimensions; particle physics – cosmology connection
Abstract In this paper we analyze a dark matter model inspired by theories with extra dimensions. The dark matter candidate corresponds to the first Kaluza-Klein mode of an real scalar added to the Standard Model. The tower of new particles enriches the calculation of the relic abundance. For large mass splitting, the model converges to the predictions of the inert singlet dark matter model. For nearly degenerate mass spectrum, coannihilations increase the cross-sections used for direct and indirect dark matter searches. Moreover, the Kaluza-Klein zero mode can mix with the SM higgs and further constraints can be applied.
Address [Lineros, R. A.; Pereira dos Santos, F. A.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46980 Paterna, Spain, Email: rlineros@ific.uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000345990800060 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2042
Permanent link to this record
 

 
Author (down) Kim, J.; Ko, P.; Park, W.I.
Title Higgs-portal assisted Higgs inflation with a sizeable tensor-to-scalar ratio Type Journal Article
Year 2017 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 02 Issue 2 Pages 003 - 16pp
Keywords inflation; particle physics – cosmology connection; physics of the early universe
Abstract We show that the Higgs portal interactions involving extra dark Higgs field can save generically the original Higgs inflation of the standard model (SM) from the problem of a deep non-SM vacuum in the SM Higgs potential. Specifically, we show that such interactions disconnect the top quark pole mass from inflationary observables and allow multi-dimensional parameter space to save the Higgs inflation, thanks to the additional parameters (the dark Higgs boson mass m(phi), the mixing angle a between the SM Higgs H and dark Higgs Phi, and the mixed quartic coupling) affecting RG-running of the Higgs quartic coupling. The effect of Higgs portal interactions may lead to a larger tensor-to-scalar ratio, 0.08 less than or similar to r less than or similar to 0.1, by adjusting relevant parameters in wide ranges of alpha and m(phi), some region of which can be probed at future colliders. Performing a numerical analysis we find an allowed region of parameters, matching the latest Planck data.
Address [Kim, Jinsu; Ko, Pyungwon] Korea Inst Adv Study, Quantum Universe Ctr, 85 Hoegiro Dongdaemungu, Seoul 02455, South Korea, Email: kimjinsu@kias.re.kr;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000399455000003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3080
Permanent link to this record
 

 
Author (down) Gariazzo, S.; de Salas, P.F.; Pastor, S.
Title Thermalisation of sterile neutrinos in the early universe in the 3+1 scheme with full mixing matrix Type Journal Article
Year 2019 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 07 Issue 7 Pages 014 - 30pp
Keywords cosmological neutrinos; neutrino properties; particle physics – cosmology connection; physics of the early universe
Abstract In the framework of a 3+1 scheme with an additional inert state, we consider the thermalisation of sterile neutrinos in the early Universe taking into account the full 4 x 4 mixing matrix. The evolution of the neutrino energy distributions is found solving the momentum-dependent kinetic equations with full diagonal collision terms, as in previous analyses of flavour neutrino decoupling in the standard case. The degree of thermalisation of the sterile state is shown in terms of the effective number of neutrinos, N-eff, and its dependence on the three additional mixing angles (theta(14), theta(24), theta(34)) and on the squared mass difference Delta m(41)(2) is discussed. Our results are relevant for fixing the contribution of a fourth light neutrino species to the cosmological energy density, whose value is very well constrained by the final Planck analysis. For the preferred region of active-sterile mixing parameters from short-baseline neutrino experiments, we find that the fourth state is fully thermalised (N-eff similar or equal to 4).
Address [Gariazzo, S.; Pastor, S.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: gariazzo@ific.uv.es;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000474782100001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4076
Permanent link to this record