|   | 
Details
   web
Records
Author (down) Vilella, E.; Alonso, O.; Trenado, J.; Vila, A.; Casanova, R.; Vos, M.; Garrido, L.; Dieguez, A.
Title A test beam setup for the characterization of the Geiger-mode avalanche photodiode technology for particle tracking Type Journal Article
Year 2012 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 694 Issue Pages 199-204
Keywords The Geiger-mode avalanche photodiode (GAPD); CMOS; EUDET/AIDA telescope; Schottky detector; Test beam; Trigger logic unit (TLU)
Abstract It is well known that avalanche photodiodes operated in the Geiger mode above the breakdown voltage offer a virtually infinite gain and time accuracy in the picosecond range that can be used for single photon detection. However, their performance in particle detection still remains unexplored. In this contribution, we are going to expose different steps that we have taken in order to prove the efficiency of the Geiger mode avalanche photodiodes in the aforementioned field. In particular, we will present a setup for the characterization of these sensors in a test beam. The expected results of the test beam at DESY and CERN have been simulated with Geant4 and will also be exposed.
Address [Vilella, E.; Alonso, O.; Vila, A.; Casanova, R.; Dieguez, A.] Univ Barcelona, Dept Elect, E-08028 Barcelona, Spain, Email: evilella@el.ub.es
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000311020500029 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1256
Permanent link to this record
 

 
Author (down) PreSPEC and AGATA Collaborations (Ralet, D. et al); Gadea, A.
Title Data-flow coupling and data-acquisition triggers for the PreSPEC-AGATA campaign at GSI Type Journal Article
Year 2015 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 786 Issue Pages 32-39
Keywords AGATA; PreSPEC; MBS; NARVAL; DAQ; Trigger
Abstract The PreSPEC setup for high-resolution 'gamma-ray spectroscopy using radioactive ion beams was employed for experimental campaigns in 2012 and 2014. The setup consisted of the state of the art Advanced GAmma Tracking Array (AGATA) and the High Energy gamma cleteCTOR (HECTOR+) positioned around a secondary target at the final focal plane of the GSI FRagment Separator (FRS) to perform in-beam gamma-ray spectroscopy of exotic nuclei. The Lund York Cologne CAlorimeter (LYCCA) was used to identify the reaction products. In this paper we report on the trigger scheme used during the campaigns. The dataflow coupling between the Multi-Branch System (MBS) based Data AcQuisition (DAQ) used for FRS-LYCCA and the “Nouvelle Acquisition temps Reel Version 1.2 Avec Linux” (NARVAL) based acquisition system used for AGATA are also described.
Address [Ralet, D.; Pietralla, N.] Tech Univ Darmstadt, Inst Kernphys, Darmstadt, Germany, Email: D.Ralet@gsi.de
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes WOS:000353068600006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2203
Permanent link to this record
 

 
Author (down) Pierre Auger Collaboration (Abreu, P. et al); Pastor, S.
Title The exposure of the hybrid detector of the Pierre Auger Observatory Type Journal Article
Year 2011 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.
Volume 34 Issue 6 Pages 368-381
Keywords Ultra high energy cosmic rays; Pierre Auger Observatory; Extensive air showers; Trigger; Exposure; Fluorescence detector; Hybrid
Abstract The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays. It consists of a surface array to measure secondary particles at ground level and a fluorescence detector to measure the development of air showers in the atmosphere above the array. The “hybrid” detection mode combines the information from the two subsystems. We describe the determination of the hybrid exposure for events observed by the fluorescence telescopes in coincidence with at least one water-Cherenkov detector of the surface array. A detailed knowledge of the time dependence of the detection operations is crucial for an accurate evaluation of the exposure. We discuss the relevance of monitoring data collected during operations, such as the status of the fluorescence detector, background light and atmospheric conditions, that are used in both simulation and reconstruction.
Address [Ave, M.; Bluemer, H.; Daumiller, K.; Dembinski, H.; Engel, R.; Garrido, X.; Haungs, A.; Heck, D.; Huege, T.; Keilhauer, B.; Klages, H. O.; Kleinfeller, J.; Mathes, H. J.; Mueller, S.; Oehlschlaeger, J.; Pierog, T.; Roth, M.; Salamida, F.; Schieler, H.; Schroeder, F.; Schuessler, F.; Smida, R.; Ulrich, R.; Unger, M.; Valino, I.; Weinidl, A.; Will, M.; Wommer, M.] Karlsruhe Inst Technol, Inst Kernphys, Karlsruhe, Germany, Email: francesco.salamida@kit.edu
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-6505 ISBN Medium
Area Expedition Conference
Notes ISI:000287068800007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 580
Permanent link to this record
 

 
Author (down) Pierre Auger Collaboration (Abreu, P. et al); Pastor, S.
Title The Lateral Trigger Probability function for the Ultra-High Energy Cosmic Ray showers detected by the Pierre Auger Observatory Type Journal Article
Year 2011 Publication Astroparticle Physics Abbreviated Journal Astropart Phys.
Volume 35 Issue 5 Pages 266-276
Keywords Ultra-High Energy Cosmic Rays; Pierre Auger Observatory; Extensive Air Showers; Trigger performance; Surface detector; Hybrid detector
Abstract In this paper we introduce the concept of Lateral Trigger Probability (LTP) function, i.e., the probability for an Extensive Air Shower (EAS) to trigger an individual detector of a ground based array as a function of distance to the shower axis, taking into account energy, mass and direction of the primary cosmic ray. We apply this concept to the surface array of the Pierre Auger Observatory consisting of a 1.5 km spaced grid of about 1600 water Cherenkov stations. Using Monte Carlo simulations of ultra-high energy showers the LTP functions are derived for energies in the range between 10(17) and 10(19) eV and zenith angles up to 65 degrees. A parametrization combining a step function with an exponential is found to reproduce them very well in the considered range of energies and zenith angles. The LTP functions can also be obtained from data
Address [Abreu, P.; Andringa, S.; Assis, P.; Brogueira, P.; Cazon, L.; Conceicao, R.; Goncalves, P.; Pimenta, M.; Santo, C. E.; Santos, E.; Tome, B.] LIP, P-1000 Lisbon, Portugal, Email: auger_spokespersons@fnal.gov
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0927-6505 ISBN Medium
Area Expedition Conference
Notes WOS:000297434500006 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 837
Permanent link to this record
 

 
Author (down) Pierre Auger Collaboration (Abraham, J. et al); Pastor, S.
Title Trigger and aperture of the surface detector array of the Pierre Auger Observatory Type Journal Article
Year 2010 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A
Volume 613 Issue 1 Pages 29-39
Keywords Ultra high energy cosmic rays; Auger Observatory; Extensive air showers; Trigger; Exposure
Abstract The surface detector array of the Pierre Auger Observatory consists of 1600 water-Cherenkov detectors, for the study of extensive air showers (EAS) generated by ultra-high-energy cosmic rays. We describe the trigger hierarchy, from the identification of candidate showers at the level of a single detector, amongst a large background (mainly random single cosmic ray muons), up to the selection of real events and the rejection of random coincidences. Such trigger makes the surface detector array fully efficient for the detection of EAS with energy above 3 x 10(18) eV, for all zenith angles between 0 degrees and 60 degrees, independently of the position of the impact point and of the mass of the primary particle. In these range of energies and angles, the exposure of the surface array can be determined purely on the basis of the geometrical acceptance.
Address [Boncioli, D.; Delle Fratte, C.; Di Giulio, C.; Matthiae, G.; Petrinca, P.; Salina, G.; Verzi, V.] Univ Roma Tor Vergata, I-00173 Rome, Italy, Email: giorgio.matthiae@roma2.infn.it
Corporate Author Thesis
Publisher Elsevier Science Bv Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes ISI:000274772800005 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 499
Permanent link to this record
 

 
Author (down) LHCb Collaboration (Aaij, R. et al); Martinez-Vidal, F.; Oyanguren, A.; Ruiz Valls, P.; Sanchez Mayordomo, C.
Title LHCb detector performance Type Journal Article
Year 2015 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A
Volume 30 Issue 7 Pages 1530022 - 73pp
Keywords Large detector systems for particle and astroparticle physics; particle tracking detectors; gaseous detectors; calorimeters; Cherenkov detectors; particle identification methods; detector alignment and calibration methods; trigger; LHC
Abstract The LHCb detector is a forward spectrometer at the Large Hadron Collider (LHC) at CERN. The experiment is designed for precision measurements of CP violation and rare decays of beauty and charm hadrons. In this paper the performance of the various LHCb sub-detectors and the trigger system are described, using data taken from 2010 to 2012. It is shown that the design criteria of the experiment have been met. The excellent performance of the detector has allowed the LHCb collaboration to publish a wide range of physics results, demonstrating LHCb's unique role, both as a heavy flavour experiment and as a general purpose detector in the forward region.
Address [Bediaga, I.; De Miranda, J. M.; Rodrigues, F. Ferreira; Gomes, A.; Massafferri, A.; dos Reis, A. C.; Rodrigues, A. B.] Ctr Brasileiro Pesquisas Fis, Rio De Janeiro, Brazil
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0217-751x ISBN Medium
Area Expedition Conference
Notes WOS:000350814000002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 2151
Permanent link to this record
 

 
Author (down) Esteve, R.; Toledo, J.F.; Herrero, V.; Simon, A.; Monrabal, F.; Alvarez, V.; Rodriguez, J.; Querol, M.; Ballester, F.
Title The Event Detection System in the NEXT-White Detector Type Journal Article
Year 2021 Publication Sensors Abbreviated Journal Sensors
Volume 21 Issue 2 Pages 673 - 18pp
Keywords xenon TPC; trigger concepts; data acquisition circuits; FPGA
Abstract This article describes the event detection system of the NEXT-White detector, a 5 kg high pressure xenon TPC with electroluminescent amplification, located in the Laboratorio Subterraneo de Canfranc (LSC), Spain. The detector is based on a plane of photomultipliers (PMTs) for energy measurements and a silicon photomultiplier (SiPM) tracking plane for offline topological event filtering. The event detection system, based on the SRS-ATCA data acquisition system developed in the framework of the CERN RD51 collaboration, has been designed to detect multiple events based on online PMT signal energy measurements and a coincidence-detection algorithm. Implemented on FPGA, the system has been successfully running and evolving during NEXT-White operation. The event detection system brings some relevant and new functionalities in the field. A distributed double event processor has been implemented to detect simultaneously two different types of events thus allowing simultaneous calibration and physics runs. This special feature provides constant monitoring of the detector conditions, being especially relevant to the lifetime and geometrical map computations which are needed to correct high-energy physics events. Other features, like primary scintillation event rejection, or a double buffer associated with the type of event being searched, help reduce the unnecessary data throughput thus minimizing dead time and improving trigger efficiency.
Address [Esteve Bosch, Raul; Toledo Alarcon, Jose F.; Herrero Bosch, Vicente; Alvarez Puerta, Vicente; Rodriguez Samaniego, Javier; Ballester Merelo, Francisco] Univ Politecn Valencia, CSIC, Inst Instrumentac Imagen Mol I3M, Ctr Mixto, Camino Vera S-N, Valencia 46022, Spain, Email: rauesbos@eln.upv.es;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000611719600001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4693
Permanent link to this record
 

 
Author (down) Esteve, R.; Toledo, J.; Monrabal, F.; Lorca, D.; Serra, L.; Mari, A.; Gomez-Cadenas, J.J.; Liubarsky, I.; Mora, F.
Title The trigger system in the NEXT-DEMO detector Type Journal Article
Year 2012 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 7 Issue Pages C12001 - 9pp
Keywords Data acquisition circuits; Trigger algorithms; Trigger concepts and systems (hardware and software); Modular electronics
Abstract NEXT-DEMO is a prototype of NEXT (Neutrino Experiment with Xenon TPC), an experiment to search for neutrino-less double beta decay using a 100 kg radio-pure, 90 % enriched (136Xe isotope) high-pressure gaseous xenon TPC with electroluminescence readout. The detector is based on a PMT plane for energy measurements and a SiPM tracking plane for topological event filtering. The experiment will be located in the Canfranc Underground Laboratory in Spain. Front-end electronics, trigger and data-acquisition systems (DAQ) have been built. The DAQ is an implementation of the Scalable Readout System (RD51 collaboration) based on FPGA. Our approach for trigger is to have a distributed and reconfigurable system in the DAQ itself. Moreover, the trigger allows on-line triggering based on the detection of primary or secondary scintillation light, or a combination of both, that arrives to the PMT plane.
Address [Esteve, R.; Toledo, J.; Mari, A.; Mora, F.] Univ Politecn Valencia, Inst Instrumentac Imagen Mol I3M, Valencia 46022, Spain, Email: rauesbos@eln.upv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000312962500001 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 1288
Permanent link to this record
 

 
Author (down) Calefice, L.; Hennequin, A.; Henry, L.; Jashal, B.K.; Mendoza, D.; Oyanguren, A.; Sanderswood, I.; Sierra, C.V.; Zhuo, J.H.
Title Effect of the high-level trigger for detecting long-lived particles at LHCb Type Journal Article
Year 2022 Publication Frontiers in Big Data Abbreviated Journal Front. Big Data
Volume 5 Issue Pages 1008737 - 13pp
Keywords LHCb; trigger; real time analysis; long-lived particles; GPU; SciFi; beyond standard physics
Abstract Long-lived particles (LLPs) show up in many extensions of the Standard Model, but they are challenging to search for with current detectors, due to their very displaced vertices. This study evaluated the ability of the trigger algorithms used in the Large Hadron Collider beauty (LHCb) experiment to detect long-lived particles and attempted to adapt them to enhance the sensitivity of this experiment to undiscovered long-lived particles. A model with a Higgs portal to a dark sector is tested, and the sensitivity reach is discussed. In the LHCb tracking system, the farthest tracking station from the collision point is the scintillating fiber tracker, the SciFi detector. One of the challenges in the track reconstruction is to deal with the large amount of and combinatorics of hits in the LHCb detector. A dedicated algorithm has been developed to cope with the large data output. When fully implemented, this algorithm would greatly increase the available statistics for any long-lived particle search in the forward region and would additionally improve the sensitivity of analyses dealing with Standard Model particles of large lifetime, such as KS0 or Lambda (0) hadrons.
Address [Calefice, Lukas] Sorbonne Univ, Lab Phys Nucl & Hautes Energies, CNRS, IN2P3, Paris, France, Email: arantza.oyanguren@ific.uv.es
Corporate Author Thesis
Publisher Frontiers Media Sa Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes WOS:000889005000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5423
Permanent link to this record
 

 
Author (down) ATLAS Collaboration (Aad, G. et al); Cabrera Urban, S.; Castillo Gimenez, V.; Costa, M.J.; Fassi, F.; Ferrer, A.; Fiorini, L.; Fuster, J.; Garcia, C.; Garcia Navarro, J.E.; Gonzalez de la Hoz, S.; Hernandez Jimenez, Y.; Higon-Rodriguez, E.; Irles Quiles, A.; Kaci, M.; Lacasta, C.; Lacuesta, V.R.; March, L.; Marti-Garcia, S.; Miñano, M.; Mitsou, V.A.; Moles-Valls, R.; Moreno Llacer, M.; Oliver Garcia, E.; Pedraza Lopez, S.; Perez Garcia-Estañ, M.T.; Romero Adam, E.; Ros, E.; Salt, J.; Sanchez Martinez, V.; Soldevila, U.; Sanchez, J.; Torro Pastor, E.; Valero, A.; Valladolid Gallego, E.; Valls Ferrer, J.A.; Villaplana Perez, M.; Vos, M.
Title Triggers for displaced decays of long-lived neutral particles in the ATLAS detector Type Journal Article
Year 2013 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 8 Issue Pages P07015 - 35pp
Keywords Trigger concepts and systems (hardware and software); Online farms and online filtering; Trigger algorithms
Abstract A set of three dedicated triggers designed to detect long-lived neutral particles decaying throughout the ATLAS detector to a pair of hadronic jets is described. The efficiencies of the triggers for selecting displaced decays as a function of the decay position are presented for simulated events. The effect of pile-up interactions on the trigger efficiencies and the dependence of the trigger rate on instantaneous luminosity during the 2012 data-taking period at the LHC are discussed.
Address [Jackson, P.; Soni, N.] Univ Adelaide, Sch Chem & Phys, Adelaide, SA, Australia
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000322572900026 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1553
Permanent link to this record