|   | 
Details
   web
Records
Author (down) Tortajada, S.; Albiol, F.; Caballero, L.; Albiol, A.; Leganes-Nieto, J.L.
Title A portable geometry-independent tomographic system for gamma-ray, a next generation of nuclear waste characterization Type Journal Article
Year 2023 Publication Scientific Reports Abbreviated Journal Sci Rep
Volume 13 Issue 1 Pages 12284 - 10pp
Keywords
Abstract One of the main activities of the nuclear industry is the characterisation of radioactive waste based on the detection of gamma radiation. Large volumes of radioactive waste are classified according to their average activity, but often the radioactivity exceeds the maximum allowed by regulators in specific parts of the bulk. In addition, the detection of the radiation is currently based on static detection systems where the geometry of the bulk is fixed and well known. Furthermore, these systems are not portable and depend on the transport of waste to the places where the detection systems are located. However, there are situations where the geometry varies and where moving waste is complex. This is especially true in compromised situations.We present a new model for nuclear waste management based on a portable and geometry-independent tomographic system for three-dimensional image reconstruction for gamma radiation detection. The system relies on a combination of a gamma radiation camera and a visible camera that allows to visualise radioactivity using augmented reality and artificial computer vision techniques. This novel tomographic system has the potential to be a disruptive innovation in the nuclear industry for nuclear waste management.
Address [Tortajada, Salvador; Albiol, Francisco; Caballero, Luis] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46980 Paterna Valencia, Spain, Email: s.tortajada@ific.uv.es
Corporate Author Thesis
Publisher Nature Portfolio Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes WOS:001041587900052 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5612
Permanent link to this record
 

 
Author (down) Schaffter, T. et al; Albiol, F.; Caballero, L.
Title Evaluation of Combined Artificial Intelligence and Radiologist Assessment to Interpret Screening Mammograms Type Journal Article
Year 2020 Publication JAMA Network Open Abbreviated Journal JAMA Netw. Open
Volume 3 Issue 3 Pages e200265 - 15pp
Keywords
Abstract Importance Mammography screening currently relies on subjective human interpretation. Artificial intelligence (AI) advances could be used to increase mammography screening accuracy by reducing missed cancers and false positives. Objective To evaluate whether AI can overcome human mammography interpretation limitations with a rigorous, unbiased evaluation of machine learning algorithms. Design, Setting, and Participants In this diagnostic accuracy study conducted between September 2016 and November 2017, an international, crowdsourced challenge was hosted to foster AI algorithm development focused on interpreting screening mammography. More than 1100 participants comprising 126 teams from 44 countries participated. Analysis began November 18, 2016. Main Outcomes and Measurements Algorithms used images alone (challenge 1) or combined images, previous examinations (if available), and clinical and demographic risk factor data (challenge 2) and output a score that translated to cancer yes/no within 12 months. Algorithm accuracy for breast cancer detection was evaluated using area under the curve and algorithm specificity compared with radiologists' specificity with radiologists' sensitivity set at 85.9% (United States) and 83.9% (Sweden). An ensemble method aggregating top-performing AI algorithms and radiologists' recall assessment was developed and evaluated. Results Overall, 144231 screening mammograms from 85580 US women (952 cancer positive <= 12 months from screening) were used for algorithm training and validation. A second independent validation cohort included 166578 examinations from 68008 Swedish women (780 cancer positive). The top-performing algorithm achieved an area under the curve of 0.858 (United States) and 0.903 (Sweden) and 66.2% (United States) and 81.2% (Sweden) specificity at the radiologists' sensitivity, lower than community-practice radiologists' specificity of 90.5% (United States) and 98.5% (Sweden). Combining top-performing algorithms and US radiologist assessments resulted in a higher area under the curve of 0.942 and achieved a significantly improved specificity (92.0%) at the same sensitivity. Conclusions and Relevance While no single AI algorithm outperformed radiologists, an ensemble of AI algorithms combined with radiologist assessment in a single-reader screening environment improved overall accuracy. This study underscores the potential of using machine learning methods for enhancing mammography screening interpretation. Question How do deep learning algorithms perform compared with radiologists in screening mammography interpretation? Findings In this diagnostic accuracy study using 144231 screening mammograms from 85580 women from the United States and 166578 screening mammograms from 68008 women from Sweden, no single artificial intelligence algorithm outperformed US community radiologist benchmarks; including clinical data and prior mammograms did not improve artificial intelligence performance. However, combining best-performing artificial intelligence algorithms with single-radiologist assessment demonstrated increased specificity. Meaning Integrating artificial intelligence to mammography interpretation in single-radiologist settings could yield significant performance improvements, with the potential to reduce health care system expenditures and address resource scarcity experienced in population-based screening programs. This diagnostic accuracy study evaluates whether artificial intelligence can overcome human mammography interpretation limits with a rigorous, unbiased evaluation of machine learning algorithms.
Address [Schaffter, Thomas; Hoff, Bruce; Yu, Thomas; Neto, Elias Chaibub; Friend, Stephen; Guinney, Justin] Sage Bionetworks, Computat Oncol, Seattle, WA USA, Email: gustavo@us.ibm.com
Corporate Author Thesis
Publisher Amer Medical Assoc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2574-3805 ISBN Medium
Area Expedition Conference
Notes WOS:000519249800002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4683
Permanent link to this record
 

 
Author (down) Perez-Cerdan, A.B.; Rubio, B.; Gelletly, W.; Algora, A.; Agramunt, J.; Nacher, E.; Tain, J.L.; Sarriguren, P.; Fraile, L.M.; Borge, M.J.G.; Caballero, L.; Dessagne, P.; Jungclaus, A.; Heitz, G.; Marechal, F.; Poirier, E.; Salsac, M.D.; Tengblad, O.
Title Deformation of Sr and Rb isotopes close to the N = Z line via beta-decay studies using the total absorption technique Type Journal Article
Year 2013 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 88 Issue 1 Pages 014324 - 15pp
Keywords
Abstract A study of the Gamow-Teller strength distributions B(GT) in the beta decay of Sr-78 and Rb-76,Rb-78 has been made using a total absorption spectrometer (TAS). Following the success in deducing the sign of the deformation for Sr-76, a similar approach is adopted for Sr-78 based on a comparison of the measured B(GT) with quasiparticle random-phase approximation calculations. This work confirms its previously expected prolate deformation in the ground state. Conclusions about the structure of the odd-odd Rb-76,Rb-78 isotopes have been drawn based on their measured B(GT) distributions.
Address [Perez-Cerdan, A. B.; Rubio, B.; Algora, A.; Agramunt, J.; Nacher, E.; Tain, J. L.; Caballero, L.] CSIC Univ Valencia, IFIC, E-46071 Valencia, Spain, Email: berta.rubio@ific.uv.es
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0556-2813 ISBN Medium
Area Expedition Conference
Notes WOS:000322531400002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1522
Permanent link to this record
 

 
Author (down) Perez-Cerdan, A.B.; Rubio, B.; Gelletly, W.; Algora, A.; Agramunt, J.; Burkard, K.; Huller, W.; Nacher, E.; Sarriguren, P.; Caballero, L.; Molina, F.; Fraile, L.M.; Reillo, E.; Borge, M.J.G.; Dessagne, P.; Jungclaus, A.; Salsac, M.D.
Title beta decay of (78)Sr Type Journal Article
Year 2011 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 84 Issue 5 Pages 054311 - 15pp
Keywords
Abstract The gamma rays and conversion electrons emitted in the beta decay of (78)Sr to levels in (78)Rb have been studied using Ge detectors and a mini-orange spectrometer. A reliable level scheme based on the results of these experiments has been established. The properties of the levels in (78)Rb have been compared with calculations based on deformed Hartree-Fock with Skyrme interactions and pairing correlations in the BCS approximation. This has allowed an interpretation of the nature of the observed sets of levels in the odd-odd nucleus (78)Rb.
Address [Perez-Cerdan, AB; Rubio, B; Algora, A; Agramunt, J; Nacher, E; Caballero, L; Molina, F] Univ Valencia, Inst Fis Corpuscular, CSIC, E-46071 Valencia, Spain, Email: berta.rubio@ific.uv.es
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0556-2813 ISBN Medium
Area Expedition Conference
Notes WOS:000297122200003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ elepoucu @ Serial 808
Permanent link to this record
 

 
Author (down) Olleros, P.; Caballero, L.; Domingo-Pardo, C.; Babiano, V.; Ladarescu, I.; Calvo, D.; Gramage, P.; Nacher, E.; Tain, J.L.; Tolosa, A.
Title On the performance of large monolithic LaCl3(Ce) crystals coupled to pixelated silicon photosensors Type Journal Article
Year 2018 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 13 Issue Pages P03014 - 17pp
Keywords Compton imaging; Detector modelling and simulations I (interaction of radiation with matter interaction of photons with matter interaction of hadrons with matter etc); Gamma detectors (scintillators CZT HPG HgI etc); Instrumentation and methods for time-of-flight (TOF); spectroscopy
Abstract We investigate the performance of large area radiation detectors, with high energy-and spatial-resolution, intended for the development of a Total Energy Detector with gamma-ray imaging capability, so-called i-TED. This new development aims for an enhancement in detection sensitivity in time-of-flight neutron capture measurements, versus the commonly used C6D6 liquid scintillation total-energy detectors. In this work, we study in detail the impact of the readout photosensor on the energy response of large area (50 x 50 mm(2)) monolithic LaCl3(Ce) crystals, in particular when replacing a conventional mono-cathode photomultiplier tube by an 8 x 8 pixelated silicon photomultiplier. Using the largest commercially available monolithic SiPM array (25 cm(2)), with a pixel size of 6 x 6 mm(2), we have measured an average energy resolution of 3.92% FWHM at 662 keV for crystal thick-nesses of 10, 20 and 30 mm. The results are confronted with detailed Monte Carlo (MC) calculations, where optical processes and properties have been included for the reliable tracking of the scintillation photons. After the experimental validation of the MC model, we use our MC code to explore the impact of a smaller photosensor segmentation on the energy resolution. Our optical MC simulations predict only a marginal deterioration of the spectroscopic performance for pixels of 3 x 3 mm(2).
Address [Olleros, P.; Caballero, L.; Domingo-Pardo, C.; Babiano, V.; Ladarescu, I.; Calvo, D.; Gramage, P.; Tain, J. L.; Tolosa, A.] Univ Valencia, CSIC, Inst Fis Corpuscular, C Catedrat Jose Beltran 2, Paterna 46980, Spain, Email: Luis.Caballero@ific.uv.es
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000428146300004 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 3542
Permanent link to this record
 

 
Author (down) n_TOF Collaboration (Torres-Sanchez, P. et al); Babiano-Suarez, V.; Caballero, L.; Domingo-Pardo, C.; Ladarescu, I.; Tain, J.L.
Title Measurement of the 14N(n, p) 14C cross section at the CERN n_TOF facility from subthermal energy to 800 keV Type Journal Article
Year 2023 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 107 Issue 6 Pages 064617 - 15pp
Keywords
Abstract Background: The 14N(n, p) 14C reaction is of interest in neutron capture therapy, where nitrogen-related dose is the main component due to low-energy neutrons, and in astrophysics, where 14N acts as a neutron poison in the s process. Several discrepancies remain between the existing data obtained in partial energy ranges: thermal energy, keV region, and resonance region. Purpose: We aim to measure the 14N(n, p) 14C cross section from thermal to the resonance region in a single measurement for the first time, including characterization of the first resonances, and provide calculations of Maxwellian averaged cross sections (MACS). Method: We apply the time-of-flight technique at Experimental Area 2 (EAR-2) of the neutron time-of-flight (n_TOF) facility at CERN. 10B(n, & alpha;) 7Li and 235U(n, f ) reactions are used as references. Two detection systems are run simultaneously, one on beam and another off beam. Resonances are described with the R-matrix code SAMMY. Results: The cross section was measured from subthermal energy to 800 keV, resolving the first two resonances (at 492.7 and 644 keV). A thermal cross section was obtained (1.809 & PLUSMN; 0.045 b) that is lower than the two most recent measurements by slightly more than one standard deviation, but in line with the ENDF/B-VIII.0 and JEFF-3.3 evaluations. A 1/v energy dependence of the cross section was confirmed up to tens of keV neutron energy. The low energy tail of the first resonance at 492.7 keV is lower than suggested by evaluated values, while the overall resonance strength agrees with evaluations. Conclusions: Our measurement has allowed determination of the 14N(n, p) cross section over a wide energy range for the first time. We have obtained cross sections with high accuracy (2.5%) from subthermal energy to 800 keV and used these data to calculate the MACS for kT = 5 to kT = 100 keV.
Address [Torres-Sanchez, Pablo; Praena, Javier; Porras, Ignacio; Ogallar, Francisco] Univ Granada, Granada, Spain, Email: pablotorres@ugr.es
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:001063209900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5701
Permanent link to this record
 

 
Author (down) n_TOF Collaboration (Sosnin, N.V. et al.); Babiano-Suarez, V.; Caballero, L.; Domingo-Pardo, C.; Ladarescu, I.; Tain, J.L.
Title Measurement of the 77Se(n,gamma) cross section up to 200 keV at the n_TOF facility at CERN Type Journal Article
Year 2023 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 107 Issue 6 Pages 065805 - 9pp
Keywords
Abstract The 77Se(n,gamma) reaction is of importance for 77Se abundance during the slow neutron capture process in massive stars. We have performed a new measurement of the 77Se radiative neutron capture cross section at the Neutron Time-of-Flight facility at CERN. Resonance capture kernels were derived up to 51 keV and cross sections up to 200 keV. Maxwellian-averaged cross sections were calculated for stellar temperatures between kT = 5 keV and kT = 100 keV, with uncertainties between 4.2% and 5.7%. Our results lead to substantial decreases of 14% and 19% in 77Se abundances produced through the slow neutron capture process in selected stellar models of 15M0 and 2M0, respectively, compared to using previous recommendation of the cross section.
Address [V. Sosnin, N.; Lederer-Woods, C.; Garg, R.; Dietz, M.; Murphy, A. St. J.; Lonsdale, S.; Woods, P. J.] Univ Edinburgh, Sch Phys & Astron, Edinburgh, Scotland, Email: nsosnin@ed.ac.uk
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:001023903800002 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5599
Permanent link to this record
 

 
Author (down) n_TOF Collaboration (Michalopoulou, V. et al); Babiano-Suarez, V.; Caballero, L.; Domingo-Pardo, C.; Ladarescu, I.; Tain, J.L.
Title Measurement of the neutron-induced fission cross section of Th-230 at the CERN n_TOF facility Type Journal Article
Year 2023 Publication Physical Review C Abbreviated Journal Phys. Rev. C
Volume 108 Issue 1 Pages 014616 - 15pp
Keywords
Abstract The neutron-induced fission cross section of Th-230 has been measured at the neutron time-of-flight facility n_TOF located at CERN. The experiment was performed at the experimental area EAR-1 with a neutron flight path of 185 m, using Micromegas detectors for the detection of the fission fragments. The Th-230(n, f ) cross section was determined relative to the U-235(n, f ) one, covering the energy range from the fission threshold up to 400 MeV. The results from the present work are compared with existing cross-section datasets and the observed discrepancies are discussed and analyzed. Finally, using the code EMPIRE 3.2.3 a theoretical study, based on the statistical model, was performed leading to a satisfactory reproduction of the experimental results with the proper tuning of the respective parameters, while for incident neutron energy beyond 200 MeV the fission of( 230)Th was described by Monte Carlo simulations.
Address [Michalopoulou, V; Stamatopoulos, A.; Diakaki, M.; Vlastou, R.; Kokkoris, M.; Tassan-Got, L.] Natl Tech Univ Athens, Dept Phys, Zografou Campus, Athens, Greece, Email: veatriki.michalopoulou@cern.ch
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9985 ISBN Medium
Area Expedition Conference
Notes WOS:001063908000001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5700
Permanent link to this record
 

 
Author (down) n_TOF Collaboration (Mazzone, A. et al); Babiano-Suarez, V; Caballero, L.; Domingo-Pardo, C.; Ladarescu, I; Tain, J.L.
Title Measurement of the Gd-154(n, gamma) cross section and its astrophysical implications Type Journal Article
Year 2020 Publication Physics Letters B Abbreviated Journal Phys. Lett. B
Volume 804 Issue Pages 135405 - 6pp
Keywords s process; Gd-154; Neutron time of flight; n_TOF
Abstract The neutron capture cross section of Gd-154 was measured from 1 eV to 300 keV in the experimental area located 185 m from the CERN n_TOF neutron spallation source, using a metallic sample of gadolinium, enriched to 67% in Gd-154. The capture measurement, performed with four C6D6 scintillation detectors, has been complemented by a transmission measurement performed at the GELINA time-of-flight facility (JRC-Geel), thus minimising the uncertainty related to sample composition. An accurate Maxwellian averaged capture cross section (MACS) was deduced over the temperature range of interest for s process nucleosynthesis modelling. We report a value of 880(50) mb for the MACS at kT = 30 keV, significantly lower compared to values available in literature. The new adopted Gd-154(n, gamma) cross section reduces the discrepancy between observed and calculated solar s-only isotopic abundances predicted by s-process nucleosynthesis models.
Address [Mazzone, A.; Barbagallo, M.; Colonna, N.; Damone, L. A.; Tagliente, G.; Variale, V.] Ist Nazl Fis Nucl, Bari, Italy, Email: Cristian.Massimi@bo.infn.it
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-2693 ISBN Medium
Area Expedition Conference
Notes WOS:000548740300022 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4464
Permanent link to this record
 

 
Author (down) n_TOF Collaboration (Domingo-Pardo, C. et al); Babiano-Suarez, V.; Balibrea-Correa, J.; Caballero, L.; Ladarescu, I.; Lerendegui-Marco, J.; Tain, J.L.; Tarifeño-Saldivia, A.
Title Advances and new ideas for neutron-capture astrophysics experiments at CERN n_TOF Type Journal Article
Year 2023 Publication European Physical Journal A Abbreviated Journal Eur. Phys. J. A
Volume 59 Issue 1 Pages 8 - 11pp
Keywords
Abstract This article presents a few selected developments and future ideas related to the measurement of (n, gamma ) data of astrophysical interest at CERN n_TOF. The MC-aided analysis methodology for the use of low-efficiency radiation detectors in time-of-flight neutron-capture measurements is discussed, with particular emphasis on the systematic accuracy. Several recent instrumental advances are also presented, such as the development of total-energy detectors with gamma- ray imaging capability for background suppression, and the development of an array of small-volume organic scintilla tors aimed at exploiting the high instantaneous neutron-flux of EAR2. Finally, astrophysics prospects related to the intermediate i neutron-capture process of nucleosynthesis are discussed in the context of the new NEAR activation area.
Address [Domingo-Pardo, C.; Babiano-Suarez, V.; Balibrea-Correa, J.; Caballero, L.; Ladarescu, I.; Lerendegui-Marco, J.; Tain, J. L.; Tarifeno-Saldivia, A.] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia, Spain, Email: domingo@ific.uv.es
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6001 ISBN Medium
Area Expedition Conference
Notes WOS:000926364900001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5479
Permanent link to this record