toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Bonilla, J. et al; Vos, M. url  doi
openurl 
  Title Jets and Jet Substructure at Future Colliders Type Journal Article
  Year 2022 Publication Frontiers in Physics Abbreviated Journal Front. Physics  
  Volume 10 Issue Pages 897719 - 17pp  
  Keywords jets; jet substructure; collider; artificial intelligence; machine learning; snowmass; top quark; Higgs boson  
  Abstract Even though jet substructure was not an original design consideration for the Large Hadron Collider (LHC) experiments, it has emerged as an essential tool for the current physics program. We examine the role of jet substructure on the motivation for and design of future energy Frontier colliders. In particular, we discuss the need for a vibrant theory and experimental research and development program to extend jet substructure physics into the new regimes probed by future colliders. Jet substructure has organically evolved with a close connection between theorists and experimentalists and has catalyzed exciting innovations in both communities. We expect such developments will play an important role in the future energy Frontier physics program.  
  Address [Bonilla, Johan; Erbacher, Robin] Univ Calif, Dept Phys & Astron, Davis, CA USA, Email: bpnachman@lbl.gov;  
  Corporate Author Thesis  
  Publisher Frontiers Media Sa Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2296-424x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000822618100001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5464  
Permanent link to this record
 

 
Author (up) Boronat, M.; Marinas, C.; Frey, A.; Garcia, I.; Schwenker, B.; Vos, M.; Wilk, F. url  doi
openurl 
  Title Physical Limitations to the Spatial Resolution of Solid-State Detectors Type Journal Article
  Year 2015 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.  
  Volume 62 Issue 1 Pages 381-386  
  Keywords Charged particle tracking; silicon detectors; solid state devices  
  Abstract In this paper we explore the effect of delta-ray emission and fluctuations in the signal deposition on the detection of charged particles in silicon-based detectors. We show that these two effects ultimately limit the resolution that can be achieved by interpolation of the signal in finely segmented position-sensitive solid-state devices.  
  Address [Boronat, M.; Garcia, I.; Vos, M.] IFIC UVEG CSIC, E-46980 Valencia, Spain, Email: marcel.vos@ific.uv.es  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9499 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000349672900025 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2140  
Permanent link to this record
 

 
Author (up) Borsato, M. et al; Zurita, J.; Henry, L.; Jashal, B.K.; Oyanguren, A. url  doi
openurl 
  Title Unleashing the full power of LHCb to probe stealth new physics Type Journal Article
  Year 2022 Publication Reports on Progress in Physics Abbreviated Journal Rep. Prog. Phys.  
  Volume 85 Issue 2 Pages 024201 - 45pp  
  Keywords LHCb; stealth physics; BSM physics; hidden sectors; long-lived particles; dark matter  
  Abstract In this paper, we describe the potential of the LHCb experiment to detect stealth physics. This refers to dynamics beyond the standard model that would elude searches that focus on energetic objects or precision measurements of known processes. Stealth signatures include long-lived particles and light resonances that are produced very rarely or together with overwhelming backgrounds. We will discuss why LHCb is equipped to discover this kind of physics at the Large Hadron Collider and provide examples of well-motivated theoretical models that can be probed with great detail at the experiment.  
  Address [Borsato, M.] Heidelberg Univ, Phys Inst, Heidelberg, Germany, Email: xabier.cid.vidal@cern.ch  
  Corporate Author Thesis  
  Publisher IOP Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-4885 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000762056700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5151  
Permanent link to this record
 

 
Author (up) Briz, J.A.; Nerio, A.N.; Ballesteros, C.; Borge, M.J.G.; Martinez, P.; Perea, A.; Tavora, V.G.; Tengblad, O.; Ciemala, M.; Maj, A.; Olko, P.; Parol, W.; Pedracka, A.; Sowicki, B.; Zieblinski, M.; Nacher, E. url  doi
openurl 
  Title Proton Radiographs Using Position-Sensitive Silicon Detectors and High-Resolution Scintillators Type Journal Article
  Year 2022 Publication IEEE Transactions on Nuclear Science Abbreviated Journal IEEE Trans. Nucl. Sci.  
  Volume 69 Issue 4 Pages 696-702  
  Keywords LaBr3; particle tracking; proton computed tomography (pCT); proton radiograph; proton therapy; scintillation detectors; silicon detectors  
  Abstract Proton therapy is a cancer treatment technique currently in growth since it offers advantages with respect to conventional X-ray and gamma-ray radiotherapy. In particular, better control of the dose deposition allowing to reach higher conformity in the treatments causing less secondary effects. However, in order to take full advantage of its potential, improvements in treatment planning and dose verification are required. A new prototype of proton computed tomography scanner is proposed to design more accurate and precise treatment plans for proton therapy. Our prototype is formed by double-sided silicon strip detectors and scintillators of LaBr3(Ce) with high energy resolution and fast response. Here, the results obtained from an experiment performed using a 100-MeV proton beam are presented. Proton radiographs of polymethyl methacrylate (PMMA) samples of 50-mm thickness with spatial patterns in aluminum were taken. Their properties were studied, including reproduction of the dimensions, spatial resolution, and sensitivity to different materials. Structures of up to 2 mm are well resolved and the sensitivity of the system was enough to distinguish the thicknesses of 10 mm of aluminum or PMMA. The spatial resolution of the images was 0.3 line pairs per mm (MTF-10%). This constitutes the first step to validate the device as a proton radiography scanner.  
  Address [Briz, J. A.; Nerio, A. N.; Ballesteros, C.; Borge, M. J. G.; Martinez, P.; Perea, A.; Tavora, V. G.; Tengblad, O.] Inst Estruct Mat CSIC, Madrid 28006, Spain, Email: jose.briz@csic.es  
  Corporate Author Thesis  
  Publisher Ieee-Inst Electrical Electronics Engineers Inc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9499 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000803113800017 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5245  
Permanent link to this record
 

 
Author (up) Brook, N.H.; Castillo Garcia, L.; Conneely, T.M.; Cussans, D.; van Dijk, M.W.U.; Fohl, K.; Forty, R.; Frei, C.; Gao, R.; Gys, T.; Hancock, T.H.; Harnew, N.; Lapington, J.; Milnes, J.; Piedigrossi, D.; Rademacker, J.; Ros Garcia, A. url  doi
openurl 
  Title Testbeam studies of a TORCH prototype detector Type Journal Article
  Year 2018 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 908 Issue Pages 256-268  
  Keywords Cherenkov radiation; Particle identification; TORCH; MCP-PMT  
  Abstract TORCH is a novel time-of-flight detector that has been developed to provide charged-particle identification between 2 and 10 GeV/c momentum. TORCH combines arrival times from multiple Cherenkov photons produced within a 10 mm-thick quartz radiator plate, to achieve a 15 ps time-of-flight resolution per incident particle. A customised Micro-Channel Plate photomultiplier tube (MCP-PMT) and associated readout system utilises an innovative charge-sharing technique between adjacent pixels to obtain the necessary 70 ps time resolution of each Cherenkov photon. A five-year R&D programme has been undertaken, culminating in the construction of a small-scale prototype TORCH module. In testbeams at CERN, this prototype operated successfully with customised electronics and readout system. A full analysis chain has been developed to reconstruct the data and to calibrate the detector. Results are compared to those using a commercial Planacon MCP-PMT, and single photon resolutions approaching 80 ps have been achieved. The photon counting efficiency was found to be in reasonable agreement with a GEANT4 Monte Carlo simulation of the detector. The small-scale demonstrator is a precursor to a full-scale TORCH module (with a radiator plate of 660 x 1250 x 10 mm(3)), which is currently under construction.  
  Address [Brook, N. H.; Cussans, D.; Garcia, A. Ros] Univ Bristol, HH Wills Phys Lab, Tyndall Ave, Bristol BS8 1TL, Avon, England, Email: mvandijk@cern.ch  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000446864600033 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3760  
Permanent link to this record
 

 
Author (up) Calefice, L.; Hennequin, A.; Henry, L.; Jashal, B.K.; Mendoza, D.; Oyanguren, A.; Sanderswood, I.; Sierra, C.V.; Zhuo, J.H. doi  openurl
  Title Effect of the high-level trigger for detecting long-lived particles at LHCb Type Journal Article
  Year 2022 Publication Frontiers in Big Data Abbreviated Journal Front. Big Data  
  Volume 5 Issue Pages 1008737 - 13pp  
  Keywords LHCb; trigger; real time analysis; long-lived particles; GPU; SciFi; beyond standard physics  
  Abstract Long-lived particles (LLPs) show up in many extensions of the Standard Model, but they are challenging to search for with current detectors, due to their very displaced vertices. This study evaluated the ability of the trigger algorithms used in the Large Hadron Collider beauty (LHCb) experiment to detect long-lived particles and attempted to adapt them to enhance the sensitivity of this experiment to undiscovered long-lived particles. A model with a Higgs portal to a dark sector is tested, and the sensitivity reach is discussed. In the LHCb tracking system, the farthest tracking station from the collision point is the scintillating fiber tracker, the SciFi detector. One of the challenges in the track reconstruction is to deal with the large amount of and combinatorics of hits in the LHCb detector. A dedicated algorithm has been developed to cope with the large data output. When fully implemented, this algorithm would greatly increase the available statistics for any long-lived particle search in the forward region and would additionally improve the sensitivity of analyses dealing with Standard Model particles of large lifetime, such as KS0 or Lambda (0) hadrons.  
  Address [Calefice, Lukas] Sorbonne Univ, Lab Phys Nucl & Hautes Energies, CNRS, IN2P3, Paris, France, Email: arantza.oyanguren@ific.uv.es  
  Corporate Author Thesis  
  Publisher Frontiers Media Sa Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000889005000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5423  
Permanent link to this record
 

 
Author (up) Candido, A.; Garcia, A.; Magni, G.; Rabemananjara, T.; Rojo, J.; Stegeman, R. url  doi
openurl 
  Title Neutrino structure functions from GeV to EeV energies Type Journal Article
  Year 2023 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue 5 Pages 149 - 78pp  
  Keywords Deep Inelastic Scattering or Small-x Physics; Neutrino Interactions; Parton Distributions  
  Abstract The interpretation of present and future neutrino experiments requires accurate theoretical predictions for neutrino-nucleus scattering rates. Neutrino structure functions can be reliably evaluated in the deep-inelastic scattering regime within the perturbative QCD (pQCD) framework. At low momentum transfers (Q(2) less than or similar to few GeV2), inelastic structure functions are however affected by large uncertainties which distort event rate predictions for neutrino energies E-nu up to the TeV scale. Here we present a determination of neutrino inelastic structure functions valid for the complete range of energies relevant for phenomenology, from the GeV region entering oscillation analyses to the multi-EeV region accessible at neutrino telescopes. Our NNSF nu approach combines a machine-learning parametrisation of experimental data with pQCD calculations based on state-of-the-art analyses of proton and nuclear parton distributions (PDFs). We compare our determination to other calculations, in particular to the popular Bodek-Yang model. We provide updated predictions for inclusive cross sections for a range of energies and target nuclei, including those relevant for LHC far-forward neutrino experiments such as FASER nu, SND@LHC, and the Forward Physics Facility. The NNSF nu determination is made available as fast interpolation LHAPDF grids, and it can be accessed both through an independent driver code and directly interfaced to neutrino event generators such as GENIE.  
  Address [Candido, Alessandro] Univ Milan, Dipartimento Fis, Tif Lab, Via Celoria 16, I-20133 Milan, Italy, Email: alessandro.candido@mi.infn.it;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000992767300011 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5559  
Permanent link to this record
 

 
Author (up) Cannoni, M.; Ellis, J.; Gomez, M.E.; Lola, S.; Ruiz de Austri, R. url  doi
openurl 
  Title Supersymmetry searches in GUT models with non-universal scalar masses Type Journal Article
  Year 2016 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.  
  Volume 03 Issue 3 Pages 041 - 23pp  
  Keywords particle physics – cosmology connection; supersymmetry and cosmology  
  Abstract We study SO(10). SU(5) and flipped SU(5) GUT models with non-universal soft supersynrimetry-breaking scalar masses, exploring how they are constrained by LIIC super-synrimetry searches and cold dark matter experiments, and how they can be probed and distinguished in future experiments. We find characteristic differences between the-various GUT scenarios, particularly in the coannihilation region, which is very sensitive to changes of parameters. For example, the flipped SU(5) GUT predicts the possibility of (t) over tilde (1-chi) coannihilation, which is absent in the regions of the SO(10) and SU(5) GUT parameter spaces that we study. We use the relic density predictions in different models to determine upper bounds for the neutralino masses, and we find large differences between different GUT models in the sparticle spectra for the same LSP mass, leading to direct connections of distinctive possible experimental measurements with the structure of the GUT group. We find that future LHC searches for generic missing E-T, charginos and stops will be able to constrain the different GUT models in complementary ways, as will the Xenon 1 ton and Darwin dark matter scattering experiments and future FERMI or CIA gamma-ray searches.  
  Address [Cannoni, M.; Gomez, M. E.] Univ Huelva, Fac Ciencias Expt, Dept Fis Aplicada, Huelva 21071, Spain, Email: mirco.ccannoni@dfa.uhu.es;  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1475-7516 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000375608200043 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2674  
Permanent link to this record
 

 
Author (up) Capra, S.; Mengoni, D.; Dueñas, J.A.; John, P.R.; Gadea, A.; Aliaga, R.J.; Dormard, J.J.; Assie, M.; Pullia, A. doi  openurl
  Title Performance of the new integrated front-end electronics of the TRACE array commissioned with an early silicon detector prototype Type Journal Article
  Year 2019 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 935 Issue Pages 178-184  
  Keywords ASIC; Charge-sensitive preamplifier; Low-noise applications; Particle spectrometry; Dead time; Silicon detector  
  Abstract The spectroscopic performances of the new integrated ASIC (Application-Specific Integrated Circuit) preamplifiers for highly segmented silicon detectors have been evaluated with an early silicon detector prototype of the TRacking Array for light Charged Ejectiles (TRACE). The ASICS were mounted on a custom-designed PCB (Printed Circuit Board) and the detector plugged on it. Energy resolution tests, performed on the same detector before and after irradiation, yielded a resolution of 21 keV and 33 keV FWHM respectively. The output signals were acquired with an array of commercial 100-MHz 14-bit digitizers. The preamplifier chip is equipped with an innovative Fast-Reset device that has two functions: it reduces dramatically the dead time of the preamplifier in case of saturation (from milliseconds to microseconds) and extends the spectroscopic dynamic range of the preamplifier by more than one order of magnitude. Other key points of the device are the low noise and the wide bandwidth.  
  Address [Capra, S.; Pullia, A.] Univ Milan, Dipartimento Fis, Via Celoria 16, IT-20133 Milan, Italy, Email: stefano.capra@unimi.it  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000470063800026 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4042  
Permanent link to this record
 

 
Author (up) Carrasco, J.; Zurita, J. url  doi
openurl 
  Title Emerging jet probes of strongly interacting dark sectors Type Journal Article
  Year 2024 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 01 Issue 1 Pages 034 - 23pp  
  Keywords Dark Matter at Colliders; New Gauge Interactions; New Light Particles; Higgs Properties  
  Abstract A strongly interacting dark sector can give rise to a class of signatures dubbed dark showers, where in analogy to the strong sector in the Standard Model, the dark sector undergoes its own showering and hadronization, before decaying into Standard Model final states. When the typical decay lengths of the dark sector mesons are larger than a few centimeters (and no larger than a few meters) they give rise to the striking signature of emerging jets, characterized by a large multiplicity of displaced vertices.In this article we consider the general reinterpretation of the CMS search for emerging jets plus prompt jets into arbitrary new physics scenarios giving rise to emerging jets. More concretely, we consider the cases where the SM Higgs mediates between the dark sector and the SM, for several benchmark decay scenarios. Our procedure is validated employing the same model than the CMS emerging jet search. We find that emerging jets can be the leading probe in regions of parameter space, in particular when considering the so-called gluon portal and dark photon portal decay benchmarks. With the current 16.1 fb-1 of luminosity this search can exclude down to O\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{O} $$\end{document}(20)% exotic branching ratio of the SM Higgs, but a naive extrapolation to the 139 fb-1 luminosity employed in the current model-independent, indirect bound of 16 % would probe exotic branching ratios into dark quarks down to below 10 %. Further extrapolating these results to the HL-LHC, we find that one can pin down exotic branching ratio values of 1%, which is below the HL-LHC expectations of 2.5-4 %. We make our recasting code publicly available, as part of the LLP Recasting Repository.  
  Address [Carrasco, Juliana; Zurita, Jose] Univ Valencia, Inst Fis Corpuscular, CSIC, Catedratico Jose Beltran 2, E-46980 Paterna, Spain, Email: Juliana.Carrasco@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001137951900009 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5893  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva