toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Rice, S. et al; Algora, A.; Tain, J.L.; Valencia, E.; Agramunt, J.; Rubio, B.; Estevez, E.; Jordan, M.D. url  doi
openurl 
  Title Total absorption spectroscopy study of the beta decay of Br-86 and Rb-91 Type Journal Article
  Year 2017 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 96 Issue 1 Pages 014320 - 10pp  
  Keywords  
  Abstract The beta decays of Br-86 and Rb-91 have been studied using the total absorption spectroscopy technique. The radioactive nuclei were produced at the Ion Guide Isotope Separator On-Line facility in Jyvaskyla and further purified using the JYFLTRAP. Br-86 and Rb-91 are considered to be major contributors to the decay heat in reactors. In addition, Rb-91 was used as a normalization point in direct measurements of mean gamma energies released in the beta decay of fission products by Rudstam et al. assuming that this decaywas well known from high-resolution measurements. Our results show that both decays were suffering from the Pandemonium effect and that the results of Rudstam et al. should be renormalized. The relative impact of the studied decays in the prediction of the decay heat and antineutrino spectrum from reactors has been evaluated.  
  Address [Rice, S.; Gelletly, W.; Regan, P. H.; Bowry, M.; Farrelly, G. F.; Mason, P.; Podolyak, Zs.] Univ Surrey, Dept Phys, Guildford GU2 7XH, Surrey, England, Email: algora@ific.uv.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000406526600003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3226  
Permanent link to this record
 

 
Author (up) Rodriguez, D. et al; Algora, A.; Rubio, B.; Tain, J.L. doi  openurl
  Title MATS and LaSpec: High-precision experiments using ion traps and lasers at FAIR Type Journal Article
  Year 2010 Publication European Physical Journal-Special Topics Abbreviated Journal Eur. Phys. J.-Spec. Top.  
  Volume 183 Issue Pages 1-123  
  Keywords  
  Abstract Nuclear ground state properties including mass, charge radii, spins and moments can be determined by applying atomic physics techniques such as Penning-trap based mass spectrometry and laser spectroscopy. The MATS and LaSpec setups at the low-energy beamline at FAIR will allow us to extend the knowledge of these properties further into the region far from stability. The mass and its inherent connection with the nuclear binding energy is a fundamental property of a nuclide, a unique “fingerprint”. Thus, precise mass values are important for a variety of applications, ranging from nuclear-structure studies like the investigation of shell closures and the onset of deformation, tests of nuclear mass models and mass formulas, to tests of the weak interaction and of the Standard Model. The required relative accuracy ranges from 10(-5) to below 10(-8) for radionuclides, which most often have half-lives well below 1 s. Substantial progress in Penning trap mass spectrometry has made this method a prime choice for precision measurements on rare isotopes. The technique has the potential to provide high accuracy and sensitivity even for very short-lived nuclides. Furthermore, ion traps can be used for precision decay studies and offer advantages over existing methods. With MATS (Precision Measurements of very short-lived nuclei using an Advanced Trapping System for highly-charged ions) at FAIR we aim to apply several techniques to very short-lived radionuclides: High-accuracy mass measurements, in-trap conversion electron and alpha spectroscopy, and trap-assisted spectroscopy. The experimental setup of MATS is a unique combination of an electron beam ion trap for charge breeding, ion traps for beam preparation, and a high-precision Penning trap system for mass measurements and decay studies. For the mass measurements, MATS offers both a high accuracy and a high sensitivity. A relative mass uncertainty of 10(-9) can be reached by employing highly-charged ions and a non-destructive Fourier-Transform Ion-Cyclotron-Resonance (FT-ICR) detection technique on single stored ions. This accuracy limit is important for fundamental interaction tests, but also allows for the study of the fine structure of the nuclear mass surface with unprecedented accuracy, whenever required. The use of the FT-ICR technique provides true single ion sensitivity. This is essential to access isotopes that are produced with minimum rates which are very often the most interesting ones. Instead of pushing for highest accuracy, the high charge state of the ions can also be used to reduce the storage time of the ions, hence making measurements on even shorter-lived isotopes possible. Decay studies in ion traps will become possible with MATS. Novel spectroscopic tools for in-trap high-resolution conversion-electron and charged-particle spectroscopy from carrier-free sources will be developed, aiming e. g. at the measurements of quadrupole moments and E0 strengths. With the possibility of both high-accuracy mass measurements of the shortest-lived isotopes and decay studies, the high sensitivity and accuracy potential of MATS is ideally suited for the study of very exotic nuclides that will only be produced at the FAIR facility. Laser spectroscopy of radioactive isotopes and isomers is an efficient and model-independent approach for the determination of nuclear ground and isomeric state properties. Hyperfine structures and isotope shifts in electronic transitions exhibit readily accessible information on the nuclear spin, magnetic dipole and electric quadrupole moments as well as root-mean-square charge radii. The dependencies of the hyperfine splitting and isotope shift on the nuclear moments and mean square nuclear charge radii are well known and the theoretical framework for the extraction of nuclear parameters is well established. These extracted parameters provide fundamental information on the structure of nuclei at the limits of stability. Vital information on both bulk and valence nuclear properties are derived and an exceptional sensitivity to changes in nuclear deformation is achieved. Laser spectroscopy provides the only mechanism for such studies in exotic systems and uniquely facilitates these studies in a model-independent manner. The accuracy of laser-spectroscopic-determined nuclear properties is very high. Requirements concerning production rates are moderate; collinear spectroscopy has been performed with production rates as few as 100 ions per second and laser-desorption resonance ionization mass spectroscopy (combined with beta-delayed neutron detection) has been achieved with rates of only a few atoms per second. This Technical Design Report describes a new Penning trap mass spectrometry setup as well as a number of complementary experimental devices for laser spectroscopy, which will provide a complete system with respect to the physics and isotopes that can be studied. Since MATS and LaSpec require high-quality low-energy beams, the two collaborations have a common beamline to stop the radioactive beam of in-flight produced isotopes and prepare them in a suitable way for transfer to the MATS and LaSpec setups, respectively.  
  Address [Rodriguez, D.; Lallena, A. M.] Univ Granada, Dept Fis Atom Mol & Nucl, E-18071 Granada, Spain, Email: danielrodriguez@ugr.es  
  Corporate Author Thesis  
  Publisher Springer Heidelberg Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1951-6355 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000280061400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 412  
Permanent link to this record
 

 
Author (up) Rubio, B. et al; Orrigo, S.E.A.; Montaner-Piza, A.; Agramunt, J.; Algora, A.; Molina, F. doi  openurl
  Title Beta Decay Study of the T-z =-2 Zn-56 Nucleus and the Determination of the Half-Lives of a Few fp-shell Nuclei Type Journal Article
  Year 2014 Publication Nuclear Data Sheets Abbreviated Journal Nucl. Data Sheets  
  Volume 120 Issue Pages 37-40  
  Keywords  
  Abstract This paper concerns the experimental study of the beta decay properties of few proton-rich fp-shell nuclei. The nuclei were produced at GANIL in fragmentation reactions, separated with the LISE spectrometer and stopped in an implantation detector surrounded by Ge detectors. The beta-delayed gammas, beta-delayed protons and the exotic beta-delayed gamma-proton emission have been studied. Preliminary results are presented. The decay of the T-z = -2 nucleus Zn-56 has been studied in detail. Information from the beta-delayed protons and beta-delayed gammas has been used to deduce the decay scheme. The exotic beta-delayed gamma-proton decay has been observed for the first time in the fp-shell. The interpretation of the data was made possible thanks to the detailed knowledge of the mirror Charge Exchange (CE) process and the gamma de-excitation of the states in Co-56, the mirror nucleus of Cu-56.  
  Address [Rubio, B.; Orrigo, S. E. A.; Montaner-Piza, A.; Agramunt, J.; Algora, A.; Molina, F.] Univ Valencia, CSIC, IFIC, E-46071 Valencia, Spain, Email: Berta.Rubio@ific.uv.es  
  Corporate Author Thesis  
  Publisher Academic Press Inc Elsevier Science Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0090-3752 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000339860100010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1870  
Permanent link to this record
 

 
Author (up) Rubio, B.; Gelletly, W.; Algora, A.; Nacher, E.; Tain, J.L. doi  openurl
  Title Beta decay studies with total absorption spectroscopy and the Lucrecia spectrometer at ISOLDE Type Journal Article
  Year 2017 Publication Journal of Physics G Abbreviated Journal J. Phys. G  
  Volume 44 Issue 8 Pages 084004 - 25pp  
  Keywords beta decay; strength functions; total absorption gamma spectroscopy; nuclear shapes  
  Abstract Here we present the experimental activities carried out at ISOLDE with the total absorption spectrometer Lucrecia, a large 4 pi scintillator detector designed to absorb a full gamma cascade following beta decay. This spectrometer is designed to measure beta-feeding to excited states without the systematic error called Pandemonium. The set up allows the measurement of decays of very short half life. Experimental results from several campaigns, that focus on the determination of the shapes of beta-decaying nuclei by measuring their beta decay strength distributions as a function of excitation energy in the daughter nucleus, are presented.  
  Address [Rubio, B.; Gelletly, W.; Algora, A.; Tain, J. L.] Univ Valencia, CSIC, IFIC, E-46980 Paterna, Spain, Email: berta.rubio@ific.uv.es  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0954-3899 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000404730700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3192  
Permanent link to this record
 

 
Author (up) Tain, J.L. et al; Algora, A.; Estevez, E.; Rubio, B.; Valencia, E.; Jordan, D. doi  openurl
  Title Beta Decay Studies of Neutron Rich Nuclei Using Total Absorption Gamma-ray Spectroscopy and Delayed Neutron Measurements Type Journal Article
  Year 2011 Publication Journal of the Korean Physical Society Abbreviated Journal J. Korean Phys. Soc.  
  Volume 59 Issue 2 Pages 1499-1502  
  Keywords Beta decay; Delayed neutron emission; Total absorption gamma-ray spectroscopy; Neutron detectors; Nuclear technology; Nuclear astrophysics  
  Abstract A complete characterisation of the beta-decay of neutron-rich nuclei can be obtained from the measurement of beta-delayed gamma rays and, whenever the process is energetically possible, beta-delayed neutrons. The accurate determination of the beta-intensity distribution and the beta-delayed neutron emission probability is of great relevance in the fields of reactor technology and nuclear astrophysics. A programme for combined measurements using the total absorption gamma-ray spectroscopy technique and both neutron counters and neutron time-of-flight spectrometers is presented.  
  Address [Tain, JL; Algora, A; Estevez, E; Rubio, B; Valencia, E; Jordan, D] Univ Valencia, CSIC, Inst Fis Corpuscular, Valencia 46071, Spain, Email: tain@ific.uv.es  
  Corporate Author Thesis  
  Publisher Korean Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0374-4884 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000294080700010 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 730  
Permanent link to this record
 

 
Author (up) Tain, J.L. et al; Valencia, E.; Algora, A.; Agramunt, J.; Rubio, B.; Estevez, E.; Jordan, M.D. url  doi
openurl 
  Title Enhanced gamma-Ray Emission from Neutron Unbound States Populated in beta Decay Type Journal Article
  Year 2015 Publication Physical Review Letters Abbreviated Journal Phys. Rev. Lett.  
  Volume 115 Issue 6 Pages 062502 - 5pp  
  Keywords  
  Abstract Total absorption spectroscopy is used to investigate the beta-decay intensity to states above the neutron separation energy followed by gamma-ray emission in Br-87,Br-88 and Rb-94. Accurate results are obtained thanks to a careful control of systematic errors. An unexpectedly large. intensity is observed in all three cases extending well beyond the excitation energy region where neutron penetration is hindered by low neutron energy. The gamma branching as a function of excitation energy is compared to Hauser-Feshbach model calculations. For Br-87 and Br-88 the gamma branching reaches 57% and 20%, respectively, and could be explained as a nuclear structure effect. Some of the states populated in the daughter can only decay through the emission of a large orbital angular momentum neutron with a strongly reduced barrier penetrability. In the case of neutron-rich Rb-94 the observed 4.5% branching is much larger than the calculations performed with standard nuclear statistical model parameters, even after proper correction for fluctuation effects on individual transition widths. The difference can be reconciled by introducing an enhancement of 1 order of magnitude in the photon strength to neutron strength ratio. An increase in the photon strength function of such magnitude for very neutron-rich nuclei, if it proves to be correct, leads to a similar increase in the (n, gamma) cross section that would have an impact on r process abundance calculations.  
  Address [Tain, J. L.; Valencia, E.; Algora, A.; Agramunt, J.; Rubio, B.; Estevez, E.; Jordan, M. D.] Univ Valencia, CSIC, Inst Fis Corpuscular, E-46071 Valencia, Spain, Email: tain@ific.uv.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000359059100002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2319  
Permanent link to this record
 

 
Author (up) Tain, J.L.; Algora, A.; Agramunt, J.; Guadilla, V.; Jordan, M.D.; Montaner-Piza, A.; Rubio, B.; Valencia, E.; Cano-Ott, D.; Gelletly, W.; Martinez, T.; Mendoza, E.; Podolyak, Z.; Regan, P.; Simpson, J.; Smith, A.J.; Strachan, J. doi  openurl
  Title A decay total absorption spectrometer for DESPEC at FAIR Type Journal Article
  Year 2015 Publication Nuclear Instruments & Methods in Physics Research A Abbreviated Journal Nucl. Instrum. Methods Phys. Res. A  
  Volume 803 Issue Pages 36-46  
  Keywords Total absorption gamma-ray spectrometer; Scintillation detectors; Beta decay; High-energy beam fragmentation facilities  
  Abstract This paper presents the design of a total absorption gamma-ray spectrometer for the determination of beta-decay intensity distributions of exotic nuclear species at the focal plane of the FAIR-NUSTAR Super Fragment Separator. The spectrometer is a key instrument in the DESPEC experiment and the proposed implementation follows extensive design studies and prototype tests. Two options were contemplated, based on Nal(TI) and LaBr3:Ce inorganic scintillation crystals respectively. Monte Carlo simulations and technical considerations determined the optimal configurations consisting of sixteen 15 x 15 x 25 cm(3) crystals for the Nal(Tl) option and one hundred and twenty-eight 5.5 x 5.5 x 11 cm(3) crystals for the LaBr3:Ce option. Minimization of dead material was crucial for maximizing the spectrometer full-energy peak efficiency. Module prototypes were build to verify constructional details and characterize their performance. The measured energy and timing resolution was found to agree rather well with estimates based on simulations of scintillation light transport and collection. The neutron sensitivity of the spectrometer, important when measuring beta-delayed neutron emitters, was investigated by means of Monte Carlo simulations.  
  Address [Tain, J. L.; Algora, A.; Agramunt, J.; Guadilla, V.; Jordan, M. D.; Montaner-Piza, A.; Rubio, B.; Valencia, E.] Univ Valencia, Inst Fis Corpuscular, CSIC, E-46071 Valencia, Spain, Email: tain@ific.uv.es  
  Corporate Author Thesis  
  Publisher Elsevier Science Bv Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000363464600007 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2431  
Permanent link to this record
 

 
Author (up) Tamii, A. et al; Rubio, B. url  doi
openurl 
  Title Complete Electric Dipole Response and the Neutron Skin in (208)Pb Type Journal Article
  Year 2011 Publication Physical Review Letters Abbreviated Journal  
  Volume 107 Issue 6 Pages 062502  
  Keywords  
  Abstract A benchmark experiment on (208)Pb shows that polarized proton inelastic scattering at very forward angles including 0 degrees is a powerful tool for high-resolution studies of electric dipole (E1) and spin magnetic dipole (M1) modes in nuclei over a broad excitation energy range to test up-to-date nuclear models. The extracted E1 polarizability leads to a neutron skin thickness r(skin) = 0.156(-0.021)(+0.025) fm in (208)Pb derived within a mean-field model [Phys. Rev. C 81, 051303 (2010)], thereby constraining the symmetry energy and its density dependence relevant to the description of neutron stars.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000293447900005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 716  
Permanent link to this record
 

 
Author (up) Valencia, E. et al; Tain, J.L.; Algora, A.; Agramunt, J.; Estevez, E.; Jordan, M.D.; Rubio, B. url  doi
openurl 
  Title Total absorption gamma-ray spectroscopy of the beta-delayed neutron emitters Br-87, Br-88, and Rb-94 Type Journal Article
  Year 2017 Publication Physical Review C Abbreviated Journal Phys. Rev. C  
  Volume 95 Issue 2 Pages 024320 - 18pp  
  Keywords  
  Abstract We investigate the decay of Br-87,Br-88 and Rb-94 using total absorption gamma-ray spectroscopy. These important fission products are beta-delayed neutron emitters. Our data show considerable beta gamma intensity, so far unobserved in high-resolution gamma-ray spectroscopy, from states at high excitation energy. We also find significant differences with the beta intensity that can be deduced from existing measurements of the beta spectrum. We evaluate the impact of the present data on reactor decay heat using summation calculations. Although the effect is relatively small it helps to reduce the discrepancy between calculations and integral measurements of the photon component for U-235 fission at cooling times in the range 1-100 s. We also use summation calculations to evaluate the impact of present data on reactor antineutrino spectra. We find a significant effect at antineutrino energies in the range of 5 to 9 MeV. In addition, we observe an unexpected strong probability for. emission from neutron unbound states populated in the daughter nucleus. The. branching is compared to Hauser-Feshbach calculations, which allow one to explain the large value for bromine isotopes as due to nuclear structure. However the branching for Rb-94, although much smaller, hints of the need to increase the radiative width gamma by one order of magnitude. This increase in gamma would lead to a similar increase in the calculated (n, gamma) cross section for this very neutron-rich nucleus with a potential impact on r process abundance calculations.  
  Address [Valencia, E.; Tain, J. L.; Algora, A.; Agramunt, J.; Estevez, E.; Jordan, M. D.; Rubio, B.] Univ Valencia, CSIC, Inst Fis Corpuscular, Apartado Correos 22085, E-46071 Valencia, Spain, Email: tain@ific.uv.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9985 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000394662200002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3015  
Permanent link to this record
 

 
Author (up) Van Isacker, P.; Algora, A.; Vitéz-Sveiczer, A.; Kiss, G.G.; Orrigo, S.E.A.; Rubio, B.; Aguilera, P. doi  openurl
  Title Gamow-Teller Beta Decay and Pseudo-SU(4) Symmetry Type Journal Article
  Year 2023 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel  
  Volume 15 Issue 11 Pages 2001 - 15pp  
  Keywords Gamow-Teller beta decay; pseudo-SU(4) symmetry; odd-odd N = Z nuclei  
  Abstract We report on recent experimental results on beta decay into self-conjugate ( N = Z) nuclei with mass number 58 <= A <= 70. Super-allowed b decays from the J(pi) = 0(+) ground state of a Z = N + 2 parent nucleus are to the isobaric analogue state through so-called Fermi transitions and to J(pi) = 1(+) states by way of Gamow-Teller (GT) transitions. The operator of the latter decay is a generator of Wigner's SU(4) algebra and as a consequence GT transitions obey selection rules associated with this symmetry. Since SU(4) is progressively broken with increasing A, mainly as a consequence of the spinorbit interaction, this symmetry is not relevant for the nuclei considered here. We argue, however, that the pseudo-spin-orbit splitting can be small in nuclei with 58 <= A <= 70, in which case nuclear states exhibit an approximate pseudo-SU(4) symmetry. To test this conjecture, GT decay strength is calculated with use of a schematic Hamiltonian with pseudo-SU(4) symmetry. Some generic features of the GT beta decay due to pseudo-SU(4) symmetry are pointed out. The experimentally observed GT strength indicates a restoration of pseudo-SU(4) symmetry for A = 70.  
  Address [Van Isacker, Piet] CEA, DRF, Grand Accelerateur Natl Ions Lourds GANIL, CNRS,IN2P3, Blvd Henri Becquerel, F-14076 Caen, France, Email: isacker@ganil.fr;  
  Corporate Author Thesis  
  Publisher Mdpi Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:001114520800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5843  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva