|   | 
Details
   web
Records
Author (up) Aiola, S.; Amhis, Y.; Billoir, P.; Jashal, B.K.; Henry, L.; Oyanguren, A.; Marin Benito, C.; Polci, F.; Quagliani, R.; Schiller, M.; Wang, M.
Title Hybrid seeding: A standalone track reconstruction algorithm for scintillating fibre tracker at LHCb Type Journal Article
Year 2021 Publication Computer Physics Communications Abbreviated Journal Comput. Phys. Commun.
Volume 260 Issue Pages 107713 - 5pp
Keywords Track reconstruction; Pattern Recognition; LHCb
Abstract We describe the Hybrid seeding, a stand-alone pattern recognition algorithm aiming at finding charged particle trajectories for the LHCb upgrade. A significant improvement to the charged particle reconstruction efficiency is accomplished by exploiting the knowledge of the LHCb magnetic field and the position of energy deposits in the scintillating fibre tracker detector. Moreover, we achieve a low fake rate and a small contribution to the overall timing budget of the LHCb real-time data processing.
Address [Billoir, P.; Polci, F.; Quagliani, R.] Sorbonne Univ, Paris Diderot Sorbonne Paris Cite, LPNHE, CNRS IN2P3, Paris, France, Email: louis.henry@cern.ch;
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0010-4655 ISBN Medium
Area Expedition Conference
Notes WOS:000608243400007 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4685
Permanent link to this record
 

 
Author (up) Aiola, S.; Bandiera, L.; Cavoto, G.; De Benedetti, F.; Fu, J.; Guidi, V.; Henry, L.; Marangotto, D.; Martinez-Vidal, F.; Mascagna, V.; Mazorra de Cos, J.; Mazzolari, A.; Merli, A.; Neri, N.; Prest, M.; Romagnoni, M.; Ruiz Vidal, J.; Soldani, M.; Sytov, A.; Tikhomirov, V.; Vallazza, E.
Title Progress towards the first measurement of charm baryon dipole moments Type Journal Article
Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D
Volume 103 Issue 7 Pages 072003 - 15pp
Keywords
Abstract Electromagnetic dipole moments of short-lived particles are sensitive to physics within and beyond the Standard Model of particle physics but have not been accessible experimentally to date. To perform such measurements it has been proposed to exploit the spin precession of channeled particles in bent crystals at the LHC. Progress that enables the first measurement of charm baryon dipole moments is reported. In particular, the design and characterization on beam of silicon and germanium bent crystal prototypes, the optimization of the experimental setup, and advanced analysis techniques are discussed. Sensitivity studies show that first measurements of Lambda(+)(c) and Xi(+)(c) baryon dipole moments can he performed in two years of data taking with an experimental setup positioned upstream of the LHCb detector.
Address [Aiola, S.; De Benedetti, F.; Fu, J.; Henry, L.; Marangotto, D.; Merli, A.; Neri, N.] Ist Nazl Fis Nucl, Sez Milano, Milan, Italy
Corporate Author Thesis
Publisher Amer Physical Soc Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2470-0010 ISBN Medium
Area Expedition Conference
Notes WOS:000648575400001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4835
Permanent link to this record
 

 
Author (up) Aja, B. et al; Gimeno, B.
Title The Canfranc Axion Detection Experiment (CADEx): search for axions at 90 GHz with Kinetic Inductance Detectors Type Journal Article
Year 2022 Publication Journal of Cosmology And Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 11 Issue 11 Pages 044 - 29pp
Keywords dark matter experiments; axions; dark matter detectors
Abstract We propose a novel experiment, the Canfranc Axion Detection Experiment (CADEx), to probe dark matter axions with masses in the range 330-460 μeV, within the W-band (80-110 GHz), an unexplored parameter space in the well-motivated dark matter window of Quantum ChromoDynamics (QCD) axions. The experimental design consists of a microwave resonant cavity haloscope in a high static magnetic field coupled to a highly sensitive detecting system based on Kinetic Inductance Detectors via optimized quasi-optics (horns and mirrors). The experiment is in preparation and will be installed in the dilution refrigerator of the Canfranc Underground Laboratory. Sensitivity forecasts for axion detection with CADEx, together with the potential of the experiment to search for dark photons, are presented.
Address [Aja, Beatriz; Artal, Eduardo; de la Fuente, Luisa; Pablo Pascual, Juan] Univ Cantabria, Dept Ingn Comunicac, Plaza Ciencia, Santander 39005, Spain, Email: ajab@unican.es;
Corporate Author Thesis
Publisher IOP Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000934034600003 Approved no
Is ISI yes International Collaboration no
Call Number IFIC @ pastor @ Serial 5478
Permanent link to this record
 

 
Author (up) Akhmedov, E.; Martinez-Mirave, P.
Title Solar (v(e))over-bar flux: revisiting bounds on neutrino magnetic moments and solar magnetic field Type Journal Article
Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 10 Issue 10 Pages 144 - 35pp
Keywords Neutrino Interactions; Neutrino Mixing; Non-Standard Neutrino Properties
Abstract The interaction of neutrino transition magnetic dipole moments with magnetic fields can give rise to the phenomenon of neutrino spin-flavour precession (SFP). For Majorana neutrinos, the combined action of SFP of solar neutrinos and flavour oscillations would manifest itself as a small, yet potentially detectable, flux of electron antineutrinos coming from the Sun. Non-observation of such a flux constrains the product of the neutrino magnetic moment μand the strength of the solar magnetic field B. We derive a simple analytical expression for the expected (v(e)) over bar appearance probability in the three-flavour framework and we use it to revisit the existing experimental bounds on μB. A full numerical calculation has also been performed to check the validity of the analytical result. We also present our numerical results in energy-binned form, convenient for analyses of the data of the current and future experiments searching for the solar (v(e)) over bar flux. In addition, we give a comprehensive compilation of other existing limits on neutrino magnetic moments and of the expressions for the probed effective magnetic moments in terms of the fundamental neutrino magnetic moments and leptonic mixing parameters.
Address [Akhmedov, Evgeny] Max Planck Inst Kernphys, Saupfercheckweg 1, D-69117 Heidelberg, Germany, Email: akhmedov@mpi-hd.mpg.de;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000871184000003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 5394
Permanent link to this record
 

 
Author (up) Akindinov, V. et al; Colomer, M.; Gozzini, S.R.; Hernandez-Rey, J.J.; Khan Chowdhury, N.R.; Thakore, T.; Zornoza, J.D.; Zuñiga, J.
Title Letter of interest for a neutrino beam from Protvino to KM3NeT/ORCA Type Journal Article
Year 2019 Publication European Physical Journal C Abbreviated Journal Eur. Phys. J. C
Volume 79 Issue 9 Pages 758 - 14pp
Keywords
Abstract The Protvino accelerator facility located in the Moscow region, Russia, is in a good position to offer a rich experimental research program in the field of neutrino physics. Of particular interest is the possibility to direct a neutrino beam from Protvino towards the KM3NeT/ORCA detector, which is currently under construction in the Mediterranean Sea 40 km offshore Toulon, France. This proposal is known as P2O. Thanks to its baseline of 2595 km, this experiment would yield an unparalleled sensitivity to matter effects in the Earth, allowing for the determination of the neutrino mass ordering with a high level of certainty after only a few years of running at a modest beam intensity of sensitivity to the leptonic CP-violating Dirac phase can be achieved. A second stage of the experiment, comprising a further intensity upgrade of the accelerator complex and a densified version of the ORCA detector (Super-ORCA), would allow for up to a 6 sigma\documentclass[12pt] resolution on the CP phase after 10 years of running with a 450 kW beam, competitive with other planned experiments. The initial composition and energy spectrum of the neutrino beam would need to be monitored by a near detector, to be constructed several hundred meters downstream from the proton beam target. The same neutrino beam and near detector set-up would also allow for neutrino-nucleus cross section measurements to be performed. A short-baseline sterile neutrino search experiment would also be possible.
Address [Akindinov, V; Kuzmin, K. S.; Zaborov, D.] NRC Kurchatov Inst, AI Alikhanov Inst Theoret & Expt Phys, Moscow, Russia, Email: zaborov@itep.ru
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1434-6044 ISBN Medium
Area Expedition Conference
Notes WOS:000485982300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4144
Permanent link to this record