Agullo, I., Navarro-Salas, J., Olmo, G. J., & Parker, L. (2010). Acceleration radiation, transition probabilities and trans-Planckian physics. New J. Phys., 12, 095017–18pp.
Abstract: An important question in the derivation of the acceleration radiation, which also arises in Hawking's derivation of black hole radiance, is the need to invoke trans-Planckian physics in describing the creation of quanta. We point out that this issue can be further clarified by reconsidering the analysis in terms of particle detectors, transition probabilities and local two-point functions. By writing down separate expressions for the spontaneous-and induced-transition probabilities of a uniformly accelerated detector, we show that the bulk of the effect comes from the natural (non-trans-Planckian) scale of the problem, which largely diminishes the importance of the trans-Planckian sector. This is so, at least, when trans-Planckian physics is defined in a Lorentz-invariant way. This analysis also suggests how one can define and estimate the role of trans-Planckian physics in the Hawking effect itself.
|
Agullo, I., Navarro-Salas, J., & Parker, L. (2012). Enhanced local-type inflationary trispectrum from a non-vacuum initial state. J. Cosmol. Astropart. Phys., 05(5), 019–13pp.
Abstract: We compute the primordial trispectrum for curvature perturbations produced during cosmic inflation in models with standard kinetic terms, when the initial quantum state is not necessarily the vacuum state. The presence of initial perturbations enhances the trispectrum amplitude for configuration in which one of the momenta, say k(3), is much smaller than the others, k(3) << k(1,2,4). For those squeezed con figurations the trispectrum acquires the so-called local form, with a scale dependent amplitude that can get values of order epsilon(k(1)/k(3))(2). This amplitude could be larger than the prediction of the so-called Maldacena consistency relation by a factor as large as 10(6), and could reach the sensitivity of forthcoming observations, even for single-field inflationary models.
|
Ahyoune, S. et al, & Gimeno, B. (2025). RADES axion search results with a high-temperature superconducting cavity in an 11.7 T magnet. J. High Energy Phys., 04(4), 113–23pp.
Abstract: We describe the results of a haloscope axion search performed with an 11.7 T dipole magnet at CERN. The search used a custom-made radio-frequency cavity coated with high-temperature superconducting tape. A set of 27 h of data at a resonant frequency of around 8.84 GHz was analysed. In the range of axion mass 36.5676 μeV to 36.5699 μeV, corresponding to a width of 554 kHz, no signal excess hinting at an axion-like particle was found. Correspondingly, in this mass range, a limit on the axion to photon coupling-strength was set in the range between ga gamma greater than or similar to 6.3 x 10-13 GeV-1 and ga gamma greater than or similar to 1.59 x 10-13 GeV-1 with a 95% confidence level.
|
Aiola, S., Amhis, Y., Billoir, P., Jashal, B. K., Henry, L., Oyanguren, A., et al. (2021). Hybrid seeding: A standalone track reconstruction algorithm for scintillating fibre tracker at LHCb. Comput. Phys. Commun., 260, 107713–5pp.
Abstract: We describe the Hybrid seeding, a stand-alone pattern recognition algorithm aiming at finding charged particle trajectories for the LHCb upgrade. A significant improvement to the charged particle reconstruction efficiency is accomplished by exploiting the knowledge of the LHCb magnetic field and the position of energy deposits in the scintillating fibre tracker detector. Moreover, we achieve a low fake rate and a small contribution to the overall timing budget of the LHCb real-time data processing.
|
Aja, B. et al, & Gimeno, B. (2022). The Canfranc Axion Detection Experiment (CADEx): search for axions at 90 GHz with Kinetic Inductance Detectors. J. Cosmol. Astropart. Phys., 11(11), 044–29pp.
Abstract: We propose a novel experiment, the Canfranc Axion Detection Experiment (CADEx), to probe dark matter axions with masses in the range 330-460 μeV, within the W-band (80-110 GHz), an unexplored parameter space in the well-motivated dark matter window of Quantum ChromoDynamics (QCD) axions. The experimental design consists of a microwave resonant cavity haloscope in a high static magnetic field coupled to a highly sensitive detecting system based on Kinetic Inductance Detectors via optimized quasi-optics (horns and mirrors). The experiment is in preparation and will be installed in the dilution refrigerator of the Canfranc Underground Laboratory. Sensitivity forecasts for axion detection with CADEx, together with the potential of the experiment to search for dark photons, are presented.
|
Akhmedov, E., & Martinez-Mirave, P. (2022). Solar (v(e))over-bar flux: revisiting bounds on neutrino magnetic moments and solar magnetic field. J. High Energy Phys., 10(10), 144–35pp.
Abstract: The interaction of neutrino transition magnetic dipole moments with magnetic fields can give rise to the phenomenon of neutrino spin-flavour precession (SFP). For Majorana neutrinos, the combined action of SFP of solar neutrinos and flavour oscillations would manifest itself as a small, yet potentially detectable, flux of electron antineutrinos coming from the Sun. Non-observation of such a flux constrains the product of the neutrino magnetic moment μand the strength of the solar magnetic field B. We derive a simple analytical expression for the expected (v(e)) over bar appearance probability in the three-flavour framework and we use it to revisit the existing experimental bounds on μB. A full numerical calculation has also been performed to check the validity of the analytical result. We also present our numerical results in energy-binned form, convenient for analyses of the data of the current and future experiments searching for the solar (v(e)) over bar flux. In addition, we give a comprehensive compilation of other existing limits on neutrino magnetic moments and of the expressions for the probed effective magnetic moments in terms of the fundamental neutrino magnetic moments and leptonic mixing parameters.
|
Al Kharusi, S. et al, & Colomer, M. (2021). SNEWS 2.0: a next-generation supernova early warning system for multi-messenger astronomy. New J. Phys., 23(3), 031201–34pp.
Abstract: The next core-collapse supernova in the Milky Way or its satellites will represent a once-in-a-generation opportunity to obtain detailed information about the explosion of a star and provide significant scientific insight for a variety of fields because of the extreme conditions found within. Supernovae in our galaxy are not only rare on a human timescale but also happen at unscheduled times, so it is crucial to be ready and use all available instruments to capture all possible information from the event. The first indication of a potential stellar explosion will be the arrival of a bright burst of neutrinos. Its observation by multiple detectors worldwide can provide an early warning for the subsequent electromagnetic fireworks, as well as signal to other detectors with significant backgrounds so they can store their recent data. The supernova early warning system (SNEWS) has been operating as a simple coincidence between neutrino experiments in automated mode since 2005. In the current era of multi-messenger astronomy there are new opportunities for SNEWS to optimize sensitivity to science from the next galactic supernova beyond the simple early alert. This document is the product of a workshop in June 2019 towards design of SNEWS 2.0, an upgraded SNEWS with enhanced capabilities exploiting the unique advantages of prompt neutrino detection to maximize the science gained from such a valuable event.
|
Alarcon, J. M., Hiller Blin, A. N., Vicente Vacas, M. J., & Weiss, C. (2017). Peripheral transverse densities of the baryon octet from chiral effective field theory and dispersion analysis. Nucl. Phys. A, 964, 18–54.
Abstract: The baryon electromagnetic form factors are expressed in terms of two-dimensional densities describing the distribution of charge and magnetization in transverse space at fixed light-front time. We calculate the transverse densities of the spin-1/2 flavor-octet baryons at peripheral distances b = O(M-pi(-1)) using methods of relativistic chiral effective field theory (chi EFT) and dispersion analysis. The densities are represented as dispersive integrals over the imaginary parts of the form factors in the timelike region (spectral functions). The isovector spectral functions on the two-pion cut t > 4 M-pi(2) are calculated using relativistic chi EFT including octet and decuplet baryons. The chi EFT calculations are extended into the rho meson mass region using an N / D method that incorporates the pion electromagnetic form factor data. The isoscalar spectral functions are modeled by vector meson poles. We compute the peripheral charge and magnetization densities in the octet baryon states, estimate the uncertainties, and determine the quark flavor decomposition. The approach can be extended to baryon form factors of other operators and the moments of generalized parton distributions.
|
Albaladejo, M. (2022). T-cc(+) coupled channel analysis and predictions. Phys. Lett. B, 829, 137052–13pp.
Abstract: A coupled channel analysis of the D*D-+(0) and D*D-0(+) system is performed to study the doubly charmed T-cc(+) state recently discovered by the LHCb collaboration. We use a simple model for the scattering amplitude and production mechanism that allows us to describe well the experimental spectrum, and obtain the T-cc(+) pole in the coupled channel T-matrix. We find that this bound state has a large molecular component. The isospin (I = 0 or I = 1) of the state cannot be inferred from the (DD0)-D-0 pi(+) spectrum alone, although there is some experimental evidence that points to the I = 0 interpretation. Therefore, we use the same formalism to predict other DD pi spectra. In the case the T-cc(+) has I = 1, we also predict the location of the other two members (T-cc(+) and T-cc(0)) of the triplet. Finally, using Heavy-Quark Spin Symmetry, we predict the location of possible heavier D*D* (I = 0 or I= 1) partners.
|
Albaladejo, M., Bibrzycki, L., Dawid, S. M., Fernandez-Ramirez, C., Gonzalez-Solis, S., Hiller Blin, A. N., et al. (2022). Novel approaches in hadron spectroscopy. Prog. Part. Nucl. Phys., 127, 103981–75pp.
Abstract: The last two decades have witnessed the discovery of a myriad of new and unexpected hadrons. The future holds more surprises for us, thanks to new-generation experiments. Understanding the signals and determining the properties of the states requires a parallel theoretical effort. To make full use of available and forthcoming data, a careful amplitude modeling is required, together with a sound treatment of the statistical uncertainties, and a systematic survey of the model dependencies. We review the contributions made by the Joint Physics Analysis Center to the field of hadron spectroscopy.
|