toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Drewes, M.; Georis, Y.; Hagedorn, C.; Klaric, J. url  doi
openurl 
  Title Low-scale leptogenesis with flavour and CP symmetries Type Journal Article
  Year 2022 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 12 Issue 12 Pages 044 - 113pp  
  Keywords Baryo-and Leptogenesis; Discrete Symmetries; Flavour Symmetries; Sterile or Heavy Neutrinos  
  Abstract We consider a type-I seesaw framework endowed with a flavour symmetry, belonging to the series of non-abelian groups increment (3 n(2)) and increment (6 n(2)), and a CP symmetry. Breaking these symmetries in a non-trivial way results in the right-handed neutrinos being degenerate in mass up to possible (further symmetry-breaking) splittings kappa and lambda, while the neutrino Yukawa coupling matrix encodes the entire flavour structure in the neutrino sector. For a fixed combination of flavour and CP symmetry and residual groups, this matrix contains five real free parameters. Four of them are determined by the light neutrino mass spectrum and by accommodating experimental data on lepton mixing well, while the angle theta(R) is related to right-handed neutrinos. We scrutinise for all four lepton mixing patterns, grouped into Case 1) through Case 3 b.1), the potential to generate the baryon asymmetry of the Universe through low-scale leptogenesis numerically and analytically. The main results are: a) the possible correlation of the baryon asymmetry and the Majorana phases, encoded in the Pontecorvo-Maki-Nakagawa-Sakata mixing matrix, in certain instances; b) the possibility to generate the correct amount of baryon asymmetry for vanishing splittings kappa and lambda among the right-handed neutrinos as well as for large kappa, depending on the case and the specific choice of group theory parameters; c) the chance to produce sufficient baryon asymmetry for large active-sterile mixing angles, enabling direct experimental tests at current and future facilities, if theta(R) is close to a special value, potentially protected by an enhanced residual symmetry. We elucidate these results with representative examples of flavour and CP symmetries, which all lead to a good agreement with the measured values of the lepton mixing angles and, possibly, the current indication of the CP phase delta. We identify the CP-violating combinations relevant for low-scale leptogenesis, and show that the parametric dependence of the baryon asymmetry found in the numerical study can be understood well with their help.  
  Address [Drewes, M.; Georis, Y.; Klaric, J.] Catholic Univ Louvain, Ctr Cosmol Particle Phys & Phenomenol, B-1348 Louvain La Neuve, Belgium, Email: marco.drewes@uclouvain.be;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000898830800001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5435  
Permanent link to this record
 

 
Author (up) Driencourt-Mangin, F.; Rodrigo, G.; Sborlini, G.F.R.; Torres Bobadilla, W.J. url  doi
openurl 
  Title Universal four-dimensional representation of H -> gamma gamma at two loops through the Loop-Tree Duality Type Journal Article
  Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 02 Issue 2 Pages 143 - 39pp  
  Keywords Scattering Amplitudes; Higgs Physics; Perturbative QCD  
  Abstract We extend useful properties of the H unintegrated dual amplitudes from one- to two-loop level, using the Loop-Tree Duality formalism. In particular, we show that the universality of the functional form regardless of the nature of the internal particle still holds at this order. We also present an algorithmic way to renormalise two-loop amplitudes, by locally cancelling the ultraviolet singularities at integrand level, thus allowing a full four-dimensional numerical implementation of the method. Our results are compared with analytic expressions already available in the literature, finding a perfect numerical agreement. The success of this computation plays a crucial role for the development of a fully local four-dimensional framework to compute physical observables at Next-to-Next-to Leading order and beyond.  
  Address [Driencourt-Mangin, Felix; Rodrigo, German; Sborlini, German F. R.; Bobadilla, William J. Torres] Univ Valencia, CSIC, IFIC, Apt Correus 22085, E-46071 Valencia, Spain, Email: felix.dm@ific.uv.es;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000459485300005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3922  
Permanent link to this record
 

 
Author (up) Du, M.L.; Baru, V.; Guo, F.K.; Hanhart, C.; Meissner, U.G.; Oller, J.A.; Wang, Q. url  doi
openurl 
  Title Revisiting the nature of the P-c pentaquarks Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 157 - 50pp  
  Keywords QCD Phenomenology; Non-perturbative renormalization  
  Abstract The nature of the three narrow hidden-charm pentaquark P-c states, i.e., P-c (4312), P-c (4440) and P-c (4457), is under intense discussion since their discovery from the updated analysis of the process Lambda(0)(b) -> I ) J/psi pK(-) by LHCb. In this work we extend our previous coupled-channel approach [Phys. Rev. Lett. 124, 072001 (2020)], in which the Pc states are treated as Sigma(()(c)*()) (D) over bar (()*()) molecules, by including the Lambda(c)(D) over bar (()*()) and eta(c)p as explicit inelastic channels in addition to the J/psi p, as required by unitarity and heavy quark spin symmetry (HQSS), respectively. Since inelastic parameters are very badly constrained by the current data, three calculation schemes are considered: (a) scheme I with pure contact interactions between the elastic, i.e., Sigma(()(c)*()) (D) over bar (()*()), and inelastic channels and without the Lambda(c)(D) over bar (()*()) interactions, (b) scheme II, where the one-pion exchange (OPE) is added to scheme I, and (c) scheme III, where the Lambda(c)(D) over bar (()*()) interactions are included in addition. It is shown that to obtain cutoff independent results, OPE in the multichannel system is to be supplemented with S-wave-to-D-wave mixing contact terms. As a result, in line with our previous analysis, we demonstrate that the experimental data for the J/psi p invariant mass distribution are consistent with the interpretation of the P-c(4312) and P-c(4440)/P-c(4457) as Sigma(c)(D) over bar and Sigma(c)(D) over bar* hadronic molecules, respectively, and that the data show clear evidence for a new narrow state, P-c(4380), identified as a Sigma(c)*(D) over bar molecule, which should exist as a consequence of HQSS. While two statistically equally good solutions are found in scheme I, only one of these solutions with the quantum numbers of the P-c (4440) and P-c (4457) being J(P) = 3/2(-) and 1/2(-), respectively, survives the requirement of regulator independence once the OPE is included. Moreover, we predict the line shapes in the elastic and inelastic channels and demonstrate that those related to the P-c (4440) and the P-c (4457) in the Sigma(()(c)*())<(D)over ( )anf eta(c)p mass distributions from Lambda(0)(b) ->( )Sigma(()(c)*()) (D) over barK(-) and Lambda(0)(b) -> eta(c)pK(-) will shed light on the quantum numbers of those states, once the data are available. We also investigate possible pentaquark signals in the Lambda(c)(D) over bar (()*()) final states.  
  Address [Du, Meng-Lin; Meissner, Ulf-G.] Univ Bonn, Helmholtz Inst Strahlen & Kernphys, D-53115 Bonn, Germany, Email: du@hiskp.uni-bonn.de  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000693090600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4958  
Permanent link to this record
 

 
Author (up) Duarte, L.; Gonzalez-Sprinberg, G.A.; Vidal, J. url  doi
openurl 
  Title Top quark anomalous tensor couplings in the two-Higgs-doublet models Type Journal Article
  Year 2013 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 11 Issue 11 Pages 114 - 21pp  
  Keywords Beyond Standard Model; Standard Model  
  Abstract We compute the one loop right and left anomalous tensor couplings (g(R) and g(L), respectively) for the top quark, in the aligned two-Higgs-doublet model. They are the magnetic-like couplings in the most general parameterization of the tbW vertex. We find that the aligned two-Higgs doublet model, that includes as particular cases some of the most studied extensions of the Higgs sector, introduces new electroweak contribution's and provides theoretical predictions that are very sensitive to both new scalar masses and the neutral scalar mixing angle. For a largo area in the parameters space we obtain significant deviations in both the real and the imaginary parts of the couplings gR and gL, compared to the predictions given by the electroweak sector of the Standard Model. The most important ones are those involving the imaginary part of the left coupling g(L) and the real part of the right coupling gR. The real part of g(L), and the imaginary part of gR also show an important sensitivity to new physics scenarios. The model can also account for new CP violation effects via the introduction of complex alignment parameters that have important consequences on the values for the imaginary parts of the couplings. The top anomalous tensor couplings will be measured at the LHC and at future colliders providing a complementary insight on new physics, independent from the bounds in top decays coming from B physics and b -> s gamma.  
  Address [Duarte, Lucia] Univ Republica, Fac Ingn, Inst Fis, Montevideo 11000, Uruguay, Email: lucia@fisica.edu.uy;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000327092900014 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 1650  
Permanent link to this record
 

 
Author (up) Durieux, G.; Irles, A.; Miralles, V.; Peñuelas, A.; Perello, M.; Poschl, R.; Vos, M. url  doi
openurl 
  Title The electro-weak couplings of the top and bottom quarks – Global fit and future prospects Type Journal Article
  Year 2019 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 12 Issue 12 Pages 098 - 44pp  
  Keywords Phenomenology of Field Theories in Higher Dimensions  
  Abstract We evaluate the implications of LHC and LEP/SLC measurements for the electro-weak couplings of the top and bottom quarks. We derive global bounds on the Wilson coefficients of ten two-fermion operators in an effective field theory description. The combination of hadron collider data with Z -pole measurements is found to yield tight limits on the operator coefficients that modify the left-handed couplings of the bottom and top quark to the Z boson. We also present projections for the high-luminosity phase of the LHC and for future electron-positron colliders. The bounds on the operator coefficients are expected to improve substantially during the remaining LHC programme, by factors of 1 to 5 if systematic uncertainties are scaled as statistical ones. The operation of an e(+)e(-) collider at a center-of-mass energy above the top-quark pair production threshold is expected to further improve the bounds by one to two orders of magnitude. The combination of measurements in pp and e(+)e(-) collisions allows for a percent-level determination of the top-quark Yukawa coupling, that is robust in a global fit.  
  Address [Durieux, Gauthier] Technion Israel Inst Technol, Dept Phys, IL-3200003 Haifa, Israel, Email: durieux@campus.technion.ac.il;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000513489700002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4280  
Permanent link to this record
 

 
Author (up) Durieux, G.; Perello, M.; Vos, M.; Zhang, C. url  doi
openurl 
  Title Global and optimal probes for the top-quark effective field theory at future lepton colliders Type Journal Article
  Year 2018 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue 10 Pages 168 - 68pp  
  Keywords Beyond Standard Model; Effective Field Theories; Heavy Quark Physics  
  Abstract We study the sensitivity to physics beyond the standard model of precise top-quark pair production measurements at future lepton colliders. A global effective-field-theory approach is employed, including all ten dimension-six operators of the Warsaw basis which involve a top-quark and give rise to tree-level amplitudes that interfere with standard-model e+e-tt ones in the limit of vanishing b-quark mass. Four-fermion and CP-violating contributions are taken into account. Circular-collider-, ILC- and CLIC-like benchmark run scenarios are examined. We compare the constraining power of various observables to a set of statistically optimal ones which maximally exploit the information contained in the fully differential bW+ distribution. The enhanced sensitivity gained on the linear contributions of dimension-six operators leads to bounds that are insensitive to quadratic ones. Even with statistically optimal observables, two centre-of-mass energies are required for constraining simultaneously two- and four-fermion operators. The impact of the centre-of-mass energy lever arm is discussed, that of beam polarization as well. A realistic estimate of the precision that can be achieved in ILC- and CLIC-like operating scenarios yields individual limits on the electroweak couplings of the top quark that are one to three orders of magnitude better than constraints set with Tevatron and LHC run I data, and three to two hundred times better than the most optimistic projections made for the high-luminosity phase of the LHC. Clean global constraints can moreover be obtained at lepton colliders, robustly covering the multidimensional effective-field-theory space with minimal model dependence.  
  Address [Durieux, Gauthier] DESY, Notkestr 85, D-22607 Hamburg, Germany, Email: gauthier.durieux@desy.de;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000448812600001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3786  
Permanent link to this record
 

 
Author (up) Eberhardt, O.; Miralles, V.; Pich, A. url  doi
openurl 
  Title Constraints on coloured scalars from global fits Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 10 Issue 10 Pages 123 - 23pp  
  Keywords Beyond Standard Model; Higgs Physics  
  Abstract We consider a simple extension of the electroweak theory, incorporating one SU(2)(L) doublet of colour-octet scalars with Yukawa couplings satisfying the principle of minimal flavour violation. Using the HEPfit package, we perform a global fit to the available data, including all relevant theoretical constraints, and extract the current bounds on the model parameters. Coloured scalars with masses below 1.05 TeV are already excluded, provided they are not fermiophobic. The mass splittings among the different (charged and CP-even and CP-odd neutral) scalars are restricted to be smaller than 20 GeV. Moreover, for scalar masses smaller than 1.5 TeV, the Yukawa coupling of the coloured scalar multiplet to the top quark cannot exceed the one of the SM Higgs doublet by more than 80%. These conclusions are quite generic and apply in more general frameworks (without fine tunings). The theoretical requirements of perturbative unitarity and vacuum stability enforce relevant constraints on the quartic scalar potential parameters that are not yet experimentally tested.  
  Address [Eberhardt, Otto; Miralles, Victor; Pich, Antonio] Inst Fis Corpuscular, Parque Cient,C Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: otto.eberhardt.physics@gmail.com;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000708483600001 Approved no  
  Is ISI yes International Collaboration no  
  Call Number IFIC @ pastor @ Serial 5006  
Permanent link to this record
 

 
Author (up) Eberhardt, O.; Peñuelas, A.; Pich, A. url  doi
openurl 
  Title Global fits in the Aligned Two-Higgs-Doublet model Type Journal Article
  Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 05 Issue 5 Pages 005 - 37pp  
  Keywords Phenomenology of Field Theories in Higher Dimensions  
  Abstract We present the results of a global fit to the Aligned Two-Higgs Doublet Model, assuming that there are no new sources of CP violation beyond the quark mixing matrix. We use the most constraining flavour observables, electroweak precision measurements and the available data on Higgs signal strengths and collider searches for heavy scalars, together with the theoretical requirements of perturbativity and positivity of the scalar potential. The combination of all these constraints restricts the values of the scalar masses, the couplings of the scalar potential and the flavour-alignment parameters. The numerical fits have been performed using the open-source HEPfit package.  
  Address [Eberhardt, Otto; Pich, Antonio] Inst Fis Corpuscular, Parque Cient,C Catedrat Jose Beltran 2, E-46980 Paterna, Spain, Email: otto.eberhardt.physics@gmail.com;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000753839400002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5114  
Permanent link to this record
 

 
Author (up) Edelhauser, L.; Porod, W.; Singh, R.K. url  doi
openurl 
  Title Spin discrimination in three-body decays Type Journal Article
  Year 2010 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 08 Issue 8 Pages 053 - 31pp  
  Keywords Beyond Standard Model; Supersymmetric Standard Model  
  Abstract The identification of the correct model for physics beyond the Standard Model requires the determination of the spin of new particles. We investigate to which extent the spin of a new particle X can be identified in scenarios where it decays dominantly in three-body decays X -> f (f) over barY. Here we assume that Y is a candidate for dark matter and escapes direct detection at a high energy collider such as the LHC. We show that in the case that all intermediate particles are heavy, one can get information on the spins of X and Y at the LHC by exploiting the invariant mass distribution of the two standard model fermions. We develop a model-independent strategy to determine the spins without prior knowledge of the unknown couplings and test it in a series of Monte Carlo studies.  
  Address [Edelhaeuser, Lisa; Porod, Werner; Singh, Ritesh K.] Univ Wurzburg, Inst Theoret Phys & Astrophys, D-97074 Wurzburg, Germany, Email: ledelhaeuser@physik.uni-wuerzburg.de  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000282368500014 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 355  
Permanent link to this record
 

 
Author (up) Ellis, J.; Gomez, M.E.; Lola, S.; Ruiz de Austri, R.; Shafi, Q. url  doi
openurl 
  Title Confronting grand unification with lepton flavour violation, dark matter and LHC data Type Journal Article
  Year 2020 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 09 Issue 9 Pages 197 - 29pp  
  Keywords Supersymmetry Phenomenology  
  Abstract We explore possible signatures for charged lepton flavour violation (LFV), sparticle discovery at the LHC and dark matter (DM) searches in grand unified theories (GUTs) based on SU(5), flipped SU(5) (FSU(5)) and SU(4)(c) x SU(2)(L) x SU(2)(R) (4-2-2). We assume that soft supersymmetry-breaking terms preserve the group symmetry at some high input scale, and focus on the non-universal effects on different matter representations generated by gauge interactions at lower scales, as well as the charged LFV induced in Type-1 see-saw models of neutrino masses. We identify the different mechanisms that control the relic DM density in the various GUT models, and contrast their LFV and LHC signatures. The SU(5) and 4-2-2 models offer good detection prospects both at the LHC and in LFV searches, though with different LSP compositions, and the SU(5) and FSU(5) models offer LFV within the current reach. The 4-2-2 model allows chargino and gluino coannihilations with neutralinos, and the former offer good detection prospects for both the LHC and LFV, while gluino coannihilations lead to lower LFV rates. Our results indicate that LFV is a powerful tool that complements LHC and DM searches, providing significant insights into the sparticle spectra and neutrino mass parameters in different models.  
  Address [Ellis, J.] Kings Coll London, Dept Phys, Theoret Particle Phys & Cosmol Grp, London WC2R 2LS, England, Email: John.Ellis@cern.ch;  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1029-8479 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000576973000003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4566  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva