Ghosh, P., Lopez-Fogliani, D. E., Mitsou, V. A., Muñoz, C., & Ruiz de Austri, R. (2015). Hunting physics beyond the standard model with unusual W-+/- and Z decays. Phys. Rev. D, 91(3), 035020–8pp.
Abstract: Nonstandard on-shell decays of W-+/- and Z bosons are possible within the framework of extended supersymmetric models, i.e., with singlet states and/or new couplings compared to the minimal supersymmetric standard model. These modes are typically encountered in regions of the parameter space with light singlet-like scalars, pseudoscalars, and neutralinos. In this letter we emphasize how these states can lead to novel signals at colliders from Z- or W-+/--boson decays with prompt or displaced multileptons/tau jets/jets/photons in the final states. These new modes would give distinct evidence of new physics even when direct searches remain unsuccessful. We discuss the possibilities of probing these new signals using the existing LHC run-I data set. We also address the same in the context of the LHC run-II, as well as for the future colliders. We exemplify our observations with the “mu from v” supersymmetric standard model, where three generations of right-handed neutrino superfields are used to solve shortcomings of the minimal supersymmetric standard model. We also extend our discussion for other variants of supersymmetric models that can accommodate similar signatures.
|
Ghosh, P., Lopez-Fogliani, D. E., Mitsou, V. A., Muñoz, C., & Ruiz de Austri, R. (2014). Probing the μnu SSM with light scalars, pseudoscalars and neutralinos from the decay of a SM-like Higgs boson at the LHC. J. High Energy Phys., 11(11), 102–57pp.
Abstract: The “mu from nu” supersymmetric standard model (mu nu SSM) can accommodate the newly discovered Higgs-like scalar boson with a mass around 125GeV. This model provides a solution to the mu-problem and simultaneously reproduces correct neutrino physics by the simple use of right-handed neutrino superfields. These new superfields together with the introduced R-parity violation can produce novel and characteristic signatures of the μnu SSM at the LHC. We explore the signatures produced through two-body Higgs decays into the new states, provided that these states lie below in the mass spectrum. For example, a pair produced light neutralinos depending on the associated decay length can give rise to displaced multi-leptons/taus/jets/photons with small/moderate missing transverse energy. In the same spirit, a Higgs-like scalar decaying to a pair of scalars/pseudoscalars can produce final states with prompt multi-leptons/taus/jets/photons.
|
Ghosh, P., Lopez-Fogliani, D. E., Mitsou, V. A., Muñoz, C., & Ruiz de Austri, R. (2013). Probing the mu-from-nu supersymmetric standard model with displaced multileptons from the decay of a Higgs boson at the LHC. Phys. Rev. D, 88(1), 015009–6pp.
Abstract: The "mu from nu'' supersymmetric standard model (mu nu SSM) cures the μproblem and concurrently reproduces measured neutrino data by using a set of usual right-handed neutrino superfields. Recently, the LHC has revealed the first scalar boson which naturally makes it tempting to test μnu SSM in the light of this new discovery. We show that this new scalar, while decaying to a pair of unstable long-lived neutralinos, can lead to a distinct signal with nonprompt multileptons. With concomitant collider analysis we show that this signal provides an intriguing signature of the model, pronounced with light neutralinos. Evidence of this signal is well envisaged with sophisticated displaced vertex analysis, which deserves experimental attention.
|
Gomez, M. E., Lola, S., Ruiz de Austri, R., & Shafi, Q. (2018). Confronting SUSY GUT With Dark Matter, Sparticle Spectroscopy and Muon (g – 2). Front. Physics, 6, 127–9pp.
Abstract: We explore the implications of LHC and cold dark matter searches for supersymmetric particle mass spectra in two different grand unified models with left-right symmetry, SO(10) and SU(4)(c) x SU(2)(L) x SU(2)(R) (4-2-2). We identify characteristic differences between the two scenarios, which imply distinct correlations between experimental measurements and the particular structure of the GUT group. The gauge structure of 4-2-2 enhances significantly the allowed parameter space as compared to SO(10), giving rise to a variety of coannihilation scenarios compatible with the LHC data, LSP dark matter and the ongoing muon g-2 experiment.
|
Gomez, M. E., Lola, S., Ruiz de Austri, R., & Shafi, Q. (2018). Dark matter, sparticle spectroscopy and muon (g-2) in SU(4)(c) x SU(2)(L) x SU(2)(R). J. High Energy Phys., 10(10), 062–24pp.
Abstract: We explore the sparticle mass spectra including LSP dark matter within the framework of supersymmetric SU(4)(c) x SU(2)(L) x SU(2)(R) (422) models, taking into account the constraints from extensive LHC and cold dark matter searches. The soft supersymmetry-breaking parameters at M-GUT can be non-universal, but consistent with the 422 symmetry. We identify a variety of coannihilation scenarios compatible with LSP dark matter, and study the implications for future supersymmetry searches and the ongoing muon g-2 experiment.
|