|   | 
Details
   web
Records
Author (up) Aguilera-Verdugo, J.J.; Hernandez-Pinto, R.J.; Rodrigo, G.; Sborlini, G.F.R.; Torres Bobadilla, W.J.
Title Mathematical properties of nested residues and their application to multi-loop scattering amplitudes Type Journal Article
Year 2021 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.
Volume 02 Issue 2 Pages 112 - 42pp
Keywords NLO Computations; QCD Phenomenology
Abstract The computation of multi-loop multi-leg scattering amplitudes plays a key role to improve the precision of theoretical predictions for particle physics at high-energy colliders. In this work, we focus on the mathematical properties of the novel integrand-level representation of Feynman integrals, which is based on the Loop-Tree Duality (LTD). We explore the behaviour of the multi-loop iterated residues and explicitly show, by developing a general compact and elegant proof, that contributions associated to displaced poles are cancelled out. The remaining residues, called nested residues as originally introduced in ref. [1], encode the relevant physical information and are naturally mapped onto physical configurations associated to nondisjoint on-shell states. By going further on the mathematical structure of the nested residues, we prove that unphysical singularities vanish, and show how the final expressions can be written by using only causal denominators. In this way, we provide a mathematical proof for the all-loop formulae presented in ref. [2].
Address [Jesus Aguilera-Verdugo, J.; Rodrigo, German; Sborlini, German F. R.; Torres Bobadilla, William J.] Univ Valencia, CSIC, Inst Fis Corpuscular, Parc Cient, E-46980 Valencia, Spain, Email: jesus.aguilera@ific.uv.es;
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1029-8479 ISBN Medium
Area Expedition Conference
Notes WOS:000620526300001 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4726
Permanent link to this record
 

 
Author (up) Agullo, I.; del Rio, A.; Navarro-Salas, J.
Title On the Electric-Magnetic Duality Symmetry: Quantum Anomaly, Optical Helicity, and Particle Creation Type Journal Article
Year 2018 Publication Symmetry-Basel Abbreviated Journal Symmetry-Basel
Volume 10 Issue 12 Pages 763 - 14pp
Keywords electric-magnetic duality symmetry; quantum anomalies; optical helicity; electromagnetic polarization; particle creation
Abstract It is well known that not every symmetry of a classical field theory is also a symmetry of its quantum version. When this occurs, we speak of quantum anomalies. The existence of anomalies imply that some classical Noether charges are no longer conserved in the quantum theory. In this paper, we discuss a new example for quantum electromagnetic fields propagating in the presence of gravity. We argue that the symmetry under electric-magnetic duality rotations of the source-free Maxwell action is anomalous in curved spacetimes. The classical Noether charge associated with these transformations accounts for the net circular polarization or the optical helicity of the electromagnetic field. Therefore, our results describe the way the spacetime curvature changes the helicity of photons and opens the possibility of extracting information from strong gravitational fields through the observation of the polarization of photons. We also argue that the physical consequences of this anomaly can be understood in terms of the asymmetric quantum creation of photons by the gravitational field.
Address [Agullo, Ivan] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA, Email: agullo@lsu.edu;
Corporate Author Thesis
Publisher Mdpi Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2073-8994 ISBN Medium
Area Expedition Conference
Notes WOS:000454725100101 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3867
Permanent link to this record
 

 
Author (up) Agullo, I.; del Rio, A.; Navarro-Salas, J.
Title Gravity and handedness of photons Type Journal Article
Year 2017 Publication International Journal of Modern Physics D Abbreviated Journal Int. J. Mod. Phys. D
Volume 26 Issue 12 Pages 1742001 - 5pp
Keywords Quantum fields in curved spacetime; symmetry and conservation laws; electromagnetic wave propagation; anomalies
Abstract Vacuum fluctuations of quantum fields are altered in the presence of a strong gravitational background, with important physical consequences. We argue that a nontrivial spacetime geometry can act as an optically active medium for quantum electromagnetic radiation, in such a way that the state of polarization of radiation changes in time, even in the absence of electromagnetic sources. This is a quantum effect, and is a consequence of an anomaly related to the classical invariance under electric-magnetic duality rotations in Maxwell theory.
Address [Agullo, Ivan] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA, Email: agullo@lsu.edu;
Corporate Author Thesis
Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0218-2718 ISBN Medium
Area Expedition Conference
Notes WOS:000414411900003 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 3355
Permanent link to this record
 

 
Author (up) Agullo, I.; Navarro-Salas, J.; Parker, L.
Title Enhanced local-type inflationary trispectrum from a non-vacuum initial state Type Journal Article
Year 2012 Publication Journal of Cosmology and Astroparticle Physics Abbreviated Journal J. Cosmol. Astropart. Phys.
Volume 05 Issue 5 Pages 019 - 13pp
Keywords inflation; non-gaussianity; quantum field theory on curved space; cosmological perturbation theory
Abstract We compute the primordial trispectrum for curvature perturbations produced during cosmic inflation in models with standard kinetic terms, when the initial quantum state is not necessarily the vacuum state. The presence of initial perturbations enhances the trispectrum amplitude for configuration in which one of the momenta, say k(3), is much smaller than the others, k(3) << k(1,2,4). For those squeezed con figurations the trispectrum acquires the so-called local form, with a scale dependent amplitude that can get values of order epsilon(k(1)/k(3))(2). This amplitude could be larger than the prediction of the so-called Maldacena consistency relation by a factor as large as 10(6), and could reach the sensitivity of forthcoming observations, even for single-field inflationary models.
Address [Agullo, Ivan] Penn State Univ, Inst Gravitat & Cosmos, University Pk, PA 16802 USA, Email: agullo@gravity.psu.edu;
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1475-7516 ISBN Medium
Area Expedition Conference
Notes WOS:000305415200020 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 1083
Permanent link to this record
 

 
Author (up) Ahlburg, P. et al; Marinas, C.
Title EUDAQ – a data acquisition software framework for common beam telescopes Type Journal Article
Year 2020 Publication Journal of Instrumentation Abbreviated Journal J. Instrum.
Volume 15 Issue 1 Pages P01038 - 30pp
Keywords Data acquisition concepts; Detector control systems (detector and experiment monitoring and slow-control systems, architecture, hardware, algorithms, databases); Particle tracking detectors; Calorimeters
Abstract EUDAQ is a generic data acquisition software developed for use in conjunction with common beam telescopes at charged particle beam lines. Providing high-precision reference tracks for performance studies of new sensors, beam telescopes are essential for the research and development towards future detectors for high-energy physics. As beam time is a highly limited resource, EUDAQ has been designed with reliability and ease-of-use in mind. It enables flexible integration of different independent devices under test via their specific data acquisition systems into a top-level framework. EUDAQ controls all components globally, handles the data flow centrally and synchronises and records the data streams. Over the past decade, EUDAQ has been deployed as part of a wide range of successful test beam campaigns and detector development applications.
Address [Arling, J. -H.; Dreyling-Eschweiler, J.; Eichhorn, T.; Gregor, I. -M.; Irles, A.; Jansen, H.; Keller, J. S.; Kulis, S.; Lange, J.; Luetticke, F.; Perrey, H.; Peschke, R.; Pitzl, D.; Rossi, E.; Rubinsky, I.; Stanitzki, M.] Deutsch Elektronen Synchrotron DESY, Notkestr 85, D-22607 Hamburg, Germany, Email: jan.dreyling-eschweiler@desy.de
Corporate Author Thesis
Publisher Iop Publishing Ltd Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1748-0221 ISBN Medium
Area Expedition Conference
Notes WOS:000525449600038 Approved no
Is ISI yes International Collaboration yes
Call Number IFIC @ pastor @ Serial 4649
Permanent link to this record