toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Bru, L.A.; de Valcarcel, G.J.; Di Molfetta, G.; Perez, A.; Roldan, E.; Silva, F. url  doi
openurl 
  Title Quantum walk on a cylinder Type Journal Article
  Year 2016 Publication Physical Review A Abbreviated Journal Phys. Rev. A  
  Volume 94 Issue 3 Pages 032328 - 7pp  
  Keywords  
  Abstract We consider the two-dimensional alternate quantum walk on a cylinder. We concentrate on the study of the motion along the open dimension, in the spirit of looking at the closed coordinate as a small or “hidden” extra dimension. If one starts from localized initial conditions on the lattice, the dynamics of the quantum walk that is obtained after tracing out the small dimension shows the contribution of several components which can be understood from the study of the dispersion relations for this problem. In fact, these components originate from the contribution of the possible values of the quasimomentum in the closed dimension. In the continuous space-time limit, the different components manifest as a set of Dirac equations, with each quasimomentum providing the value of the corresponding mass. We briefly discuss the possible link of these ideas to the simulation of high-energy physical theories that include extra dimensions. Finally, entanglement between the coin and spatial degrees of freedom is studied, showing that the entanglement entropy clearly overcomes the value reached with only one spatial dimension.  
  Address [Bru, Luis A.] Univ Politecn Valencia, ITEAM Res Inst, Opt & Quantum Commun Grp, Camino Vera S-N, E-46022 Valencia, Spain  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9926 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000384060700005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2823  
Permanent link to this record
 

 
Author (up) Degiovanni, A.; Wuensch, W.; Giner Navarro, J. doi  openurl
  Title Comparison of the conditioning of high gradient accelerating structures Type Journal Article
  Year 2016 Publication Physical Review Accelerators and Beams Abbreviated Journal Phys. Rev. Accel. Beams  
  Volume 19 Issue 3 Pages 032001 - 6pp  
  Keywords  
  Abstract Accelerating gradients in excess of 100 MV/m, at very low breakdown rates, have been successfully achieved in numerous prototype CLIC accelerating structures. The conditioning and operational histories of several structures, tested at KEK and CERN, have been compared and there is clear evidence that the conditioning progresses with the number of rf pulses and not with the number of breakdowns. This observation opens the possibility that the optimum conditioning strategy, which minimizes the total number of breakdowns the structure is subject to without increasing conditioning time, may be to never exceed the breakdown rate target for operation. The result is also likely to have a strong impact on efforts to understand the physical mechanism underlying conditioning and may lead to preparation procedures which reduce conditioning time.  
  Address [Degiovanni, Alberto; Wuensch, Walter] CERN, European Org Nucl Res, CH-1211 Geneva, Switzerland, Email: walter.wuensch@cern.ch  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9888 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000400274700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3090  
Permanent link to this record
 

 
Author (up) Di Molfetta, G.; Soares-Pinto, D.O.; Duarte Queiros, S.M. url  doi
openurl 
  Title Elephant quantum walk Type Journal Article
  Year 2018 Publication Physical Review A Abbreviated Journal Phys. Rev. A  
  Volume 97 Issue 6 Pages 062112 - 6pp  
  Keywords  
  Abstract We introduce an analytically treatable discrete time quantum walk in a one-dimensional lattice which combines non-Markovianity and hyperballistic diffusion associated with a Gaussian whose variance sigma(2)(t) grows cubicly with time sigma alpha t(3). These properties have have been numerically found in several systems, namely, tight-binding lattice models. For its rules, our model can be understood as the quantum version of the classical non-Markovian “elephant random walk” process for which the quantum coin operator only changes the value of the diffusion constant although, contrarily, to the classical coin.  
  Address [Di Molfetta, Giuseppe] Univ Toulon & Var, Aix Marseille Univ, Nat Computat Res Grp, CNRS,LIS, Marseille, France, Email: giuseppe.dimolfetta@lis-lab.fr  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9926 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000435076800002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 3625  
Permanent link to this record
 

 
Author (up) Esposito, R. et al; Domingo-Pardo, C. url  doi
openurl 
  Title Design of the third-generation lead-based neutron spallation target for the neutron time-of-flight facility at CERN Type Journal Article
  Year 2021 Publication Physical Review Accelerators and Beams Abbreviated Journal Phys. Rev. Accel. Beams  
  Volume 24 Issue 9 Pages 093001 - 17pp  
  Keywords  
  Abstract The neutron time-of-flight (n_TOF) facility at the European Laboratory for Particle Physics (CERN) is a pulsed white-spectrum neutron spallation source producing neutrons for two experimental areas: the Experimental Area 1 (EAR1), located 185 m horizontally from the target, and the Experimental Area 2 (EAR2), located 20 m above the target. The target, based on pure lead, is impacted by a high-intensity 20-GeV/c pulsed proton beam. The facility was conceived to study neutron-nucleus interactions for neutron kinetic energies between a few meV to several GeV, with applications of interest for nuclear astrophysics, nuclear technology, and medical research. After the second-generation target reached the end of its lifetime, the facility underwent a major upgrade during CERN's Long Shutdown 2 (LS2, 2019-2021), which included the installation of the new third-generation neutron target. The first- and second-generation targets were based on water-cooled massive lead blocks and were designed focusing on EAR1, since EAR2 was built later. The new target is cooled by nitrogen gas to avoid erosion-corrosion and contamination of cooling water with radioactive lead spallation products. Moreover, the new design is optimized also for the vertical flight path and EAR2. This paper presents an overview of the target design focused on both physics and thermomechanical performance, and includes a description of the nitrogen cooling circuit and radiation protection studies.  
  Address [Esposito, R.; Calviani, M.; Aberle, O.; Barbagallo, M.; Coiffet, T.; Dragoni, F.; Ximenes, R. Franqueira; Giordanino, L.; Grenier, D.; Kershaw, K.; Maire, V.; Moyret, P.; Fontenla, A. Perez; Perillo-Marcone, A.; Pozzi, F.; Sgobba, S.; Timmins, M.; Vlachoudis, V.] European Lab Particle Phys CERN, CH-1211 Geneva 23, Switzerland, Email: raffaele.esposito@cern.ch;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000696029700001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4963  
Permanent link to this record
 

 
Author (up) Fuster-Martinez, N.; Bruce, R.; Hofer, M.; Persson, T.; Redaelli, S.; Tomas, R. doi  openurl
  Title Aperture measurements with ac dipoles and movable collimators in the Large Hadron Collider Type Journal Article
  Year 2022 Publication Physical Review Accelerators and Beams Abbreviated Journal Phys. Rev. Accel. Beams  
  Volume 25 Issue 10 Pages 101002 - 13pp  
  Keywords  
  Abstract This paper presents a first experimental demonstration of a new nondestructive method for aperture measurements based on ac dipoles. In high intensity particle colliders, such as the CERN Large Hadron Collider (LHC), aperture measurements are crucial for a safe operation while optimizing the optics in order to reduce the size of the colliding beams and hence increase the luminosity. In the LHC, this type of measurements became mandatory during beam commissioning and the current method used is based on the destructive blowup of bunches using a transverse damper. The new method presented in this paper uses the ac-dipole excitation to generate adiabatic forced oscillations of the beam in order to create losses to identify the smallest aperture in the machine without blowing up the beam emittance. A precise and tuneable control of the oscillation amplitude enables the beams to be reused for several aperture measurements, as well as for other subsequent commissioning activities. Measurements performed with the new method are presented and compared with the current LHC transverse damper method for two different beam energies and two different operational optics.  
  Address [Fuster-Martinez, N.] CSIC UV, Inst Fis Corpuscular, Valencia 46908, Spain, Email: nuria.fuster@ific.uv.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000875736400001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5397  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva