toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Bertone, G.; Kong, K.C.; Ruiz de Austri, R.; Trotta, R. url  doi
openurl 
  Title Global fits of the minimal universal extra dimensions scenario Type Journal Article
  Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 83 Issue 3 Pages 036008 - 15pp  
  Keywords  
  Abstract In theories with universal extra dimensions (UED), the gamma(1) particle, first excited state of the hypercharge gauge boson, provides an excellent dark matter (DM) candidate. Here, we use a modified version of the SUPERBAYES code to perform a Bayesian analysis of the minimal UED scenario, in order to assess its detectability at accelerators and with DM experiments. We derive, in particular, the most probable range of mass and scattering cross sections off nucleons, keeping into account cosmological and electroweak precision constraints. The consequences for the detectability of the gamma(1) with direct and indirect experiments are dramatic. The spin-independent cross section probability distribution peaks at similar to 10(-11) pb, i.e. below the sensitivity of ton-scale experiments. The spin-dependent cross section drives the predicted neutrino flux from the center of the Sun below the reach of present and upcoming experiments. The only strategy that remains open appears to be direct detection with ton-scale experiments sensitive to spin-dependent cross sections. On the other hand, the LHC with 1 fb(-1) of data should be able to probe the current best-fit UED parameters.  
  Address [Bertone, Gianfranco] Univ Zurich, Inst Theoret Phys, CH-8057 Zurich, Switzerland  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000287655300012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 567  
Permanent link to this record
 

 
Author (up) Bridges, M.; Cranmer, K.; Feroz, F.; Hobson, M.; Ruiz de Austri, R.; Trotta, R. url  doi
openurl 
  Title A coverage study of the CMSSM based on ATLAS sensitivity using fast neural networks techniques Type Journal Article
  Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 03 Issue 3 Pages 012 - 23pp  
  Keywords Supersymmetry; Phenomenology  
  Abstract We assess the coverage properties of confidence and credible intervals on the CMSSM parameter space inferred from a Bayesian posterior and the profile likelihood based on an ATLAS sensitivity study. In order to make those calculations feasible, we introduce a new method based on neural networks to approximate the mapping between CMSSM parameters and weak-scale particle masses. Our method reduces the computational effort needed to sample the CMSSM parameter space by a factor of similar to 10(4) with respect to conventional techniques. We find that both the Bayesian posterior and the profile likelihood intervals can significantly over-cover and identify the origin of this effect to physical boundaries in the parameter space. Finally, we point out that the effects intrinsic to the statistical procedure are conflated with simplifications to the likelihood functions from the experiments themselves.  
  Address [Bridges, Michael; Feroz, Farhan; Hobson, Mike] Univ Cambridge, Cavendish Lab, Astrophys Grp, Cambridge CB3 0HE, England, Email: mb435@mrao.cam.ac.uk  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes ISI:000289295200012 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 610  
Permanent link to this record
 

 
Author (up) Cabrera, M.E.; Casas, J.A.; Ruiz de Austri, R.; Trotta, R. url  doi
openurl 
  Title Quantifying the tension between the Higgs mass and (g-2)(mu) in the constrained MSSM Type Journal Article
  Year 2011 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 84 Issue 1 Pages 015006 - 7pp  
  Keywords  
  Abstract Supersymmetry has often been invoked as the new physics that might reconcile the experimental muon magnetic anomaly, a(mu), with the theoretical prediction (basing the computation of the hadronic contribution on e(+)e(-) data). However, in the context of the constrained minimal supersymmetric standard model (CMSSM), the required supersymmetric contributions (which grow with decreasing supersymmetric masses) are in potential tension with a possibly large Higgs mass (which requires large stop masses). In the limit of very large m(h) supersymmetry gets decoupled, and the CMSSM must show the same discrepancy as the standard model with a(mu). But it is much less clear for which size of m(h) does the tension start to be unbearable. In this paper, we quantify this tension with the help of Bayesian techniques. We find that for m(h) >= 125 GeV the maximum level of discrepancy given the current data (similar to 3.2 sigma) is already achieved. Requiring less than 3 sigma discrepancy, implies m(h) less than or similar to 120 GeV. For a larger Higgs mass we should give up either the CMSSM model or the computation of a(mu) based on e(+)e(-); or accept living with such an inconsistency.  
  Address [Cabrera, ME; Casas, JA] UAM, IFT UAM CSIC, Inst Fis Teor, Madrid 28049, Spain, Email: maria.cabrera@uam.es  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000292547200003 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 680  
Permanent link to this record
 

 
Author (up) Feroz, F.; Cranmer, K.; Hobson, M.; Ruiz de Austri, R.; Trotta, R. url  doi
openurl 
  Title Challenges of profile likelihood evaluation in multi-dimensional SUSY scans Type Journal Article
  Year 2011 Publication Journal of High Energy Physics Abbreviated Journal J. High Energy Phys.  
  Volume 06 Issue 6 Pages 042 - 23pp  
  Keywords Supersymmetry Phenomenology  
  Abstract Statistical inference of the fundamental parameters of supersymmetric theories is a challenging and active endeavor. Several sophisticated algorithms have been employed to this end. While Markov-Chain Monte Carlo (MCMC) and nested sampling techniques are geared towards Bayesian inference, they have also been used to estimate frequentist confidence intervals based on the profile likelihood ratio. We investigate the performance and appropriate configuration of MULTINEST, a nested sampling based algorithm, when used for profile likelihood-based analyses both on toy models and on the parameter space of the Constrained MSSM. We find that while the standard configuration previously used in the literarture is appropriate for an accurate reconstruction of the Bayesian posterior, the profile likelihood is poorly approximated. We identify a more appropriate MULTINEST configuration for profile likelihood analyses, which gives an excellent exploration of the profile likelihood (albeit at a larger computational cost), including the identification of the global maximum likelihood value. We conclude that with the appropriate configuration MULTINEST is a suitable tool for profile likelihood studies, indicating previous claims to the contrary are not well founded.  
  Address [Feroz, F; Hobson, M] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England, Email: f.feroz@mrao.cam.ac.uk  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1126-6708 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000293136500042 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ elepoucu @ Serial 745  
Permanent link to this record
 

 
Author (up) Johannesson, G.; Ruiz de Austri, R.; Vincent, A.C.; Moskalenko, I.V.; Orlando, E.; Porter, T.A.; Strong, A.W.; Trotta, R.; Feroz, F.; Graff, P.; Hobson, M.P. url  doi
openurl 
  Title Bayesian analysis of cosmic-ray propagation: evidence against homogeneous diffusion Type Journal Article
  Year 2016 Publication Astrophysical Journal Abbreviated Journal Astrophys. J.  
  Volume 824 Issue 1 Pages 16 - 19pp  
  Keywords astroparticle physics; cosmic rays; diffusion; Galaxy: general; ISM: general; methods: statistical  
  Abstract We present the results of the most complete scan of the parameter space for cosmic ray (CR) injection and propagation. We perform a Bayesian search of the main GALPROP parameters, using the MultiNest nested sampling algorithm, augmented by the BAMBI neural network machine-learning package. This is the first study to separate out low-mass isotopes (p, (p) over bar and He) from the usual light elements (Be, B, C, N, and O). We find that the propagation parameters that best-fit p, (p) over bar, and He data are significantly different from those that fit light elements, including the B/C and Be-10/Be-9 secondary-to-primary ratios normally used to calibrate propagation parameters. This suggests that each set of species is probing a very different interstellar medium, and that the standard approach of calibrating propagation parameters using B/C can lead to incorrect results. We present posterior distributions and best-fit parameters for propagation of both sets of nuclei, as well as for the injection abundances of elements from H to Si. The input GALDEF files with these new parameters will be included in an upcoming public GALPROP update.  
  Address [Johannesson, G.] Univ Iceland, Inst Sci, Dunhaga 3, IS-107 Reykjavik, Iceland  
  Corporate Author Thesis  
  Publisher Iop Publishing Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-637x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000377937300016 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 2727  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva