toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Das, A.; Mandal, S.; Modak, T. url  doi
openurl 
  Title Testing triplet fermions at the electron-positron and electron-proton colliders using fat jet signatures Type Journal Article
  Year 2020 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 102 Issue 3 Pages 033001 - 22pp  
  Keywords  
  Abstract The addition of SU(2)(L) triplet fermions of zero hypercharge with the Standard Model (SM) helps to explain the origin of the neutrino mass by the so-called seesaw mechanism. Such a scenario is commonly known as the type-III seesaw model. After the electroweak symmetry breaking, the mixings between the light and heavy mass eigenstates of the neutral leptons are developed and play important roles in the study of the charged and neutral multiplets of the triplet fermions at the colliders. In this article, we study such interactions to produce these multiplets of the triplet fermion at the electron-positron and electron-proton colliders at different center-of-mass energies. We focus on the heavy triplets, for example, having mass in the TeV scale so that their decay products including the SM, the gauge bosons, or the Higgs boson can be sufficiently boosted, leading to a fat jet. Hence, we probe the mixing between light-heavy mass eigenstates of the neutrinos and compare the results with the bounds obtained by the electroweak precision study.  
  Address [Das, Arindam] Osaka Univ, Dept Phys, Toyonaka, Osaka 5600043, Japan, Email: arindam.das@het.phys.sci.osaka-u.ac.jp;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1550-7998 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000555774600002 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 4486  
Permanent link to this record
 

 
Author (up) Godbole, R.M.; Maharathy, S.P.; Mandal, S.; Mitra, M.; Sinha, N. url  doi
openurl 
  Title Interference effect in lepton number violating and conserving meson decays for a left-right symmetric model Type Journal Article
  Year 2021 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 104 Issue 9 Pages 095009 - 22pp  
  Keywords  
  Abstract We study the effect of interference on the lepton number violating (LNV) and lepton number conserving (LNC) three-bodymeson decaysM(1)(+)-> l(i) (+) l(j)(+)pi(+/-) that arise in a TeV-scale left-right symmetric model (LRSM) with degenerate or nearly degenerate right-handed (RH) neutrinos. The LRSM contains three RH neutrinos and a RH gauge boson. The RH neutrinos with masses in the range of M-N similar to (MeV-few GeV) can give resonant enhancement in the semileptonic LNV and LNC meson decays. In the case where only one RH neutrino contributes to these decays, the predicted new physics branching ratios of semileptonic LNV and LNC meson decaysM(1)(+)-> l(i)(+) l(j)(+) pi(-) andM(+) 1 -> l(i)(+)l(j)(-) pi(+) are equal. We find that with at least two RH neutrinos contributing to the process, the LNV and LNC decay rates can differ. Depending on the neutrino mixing angles and CP-violating phases, the branching ratios of LNVand LNC decay channelsmediated by the heavy neutrinos can be either enhanced or suppressed, and the ratio of these two rates can differ from unity.  
  Address [Godbole, Rohini M.] Indian Inst Sci, Ctr High Energy Phys, Bengaluru 560012, India, Email: rohini@iisc.ac.in;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000719315600005 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5028  
Permanent link to this record
 

 
Author (up) Gola, S.; Mandal, S.; Sinha, N. url  doi
openurl 
  Title ALP-portal majorana dark matter Type Journal Article
  Year 2022 Publication International Journal of Modern Physics A Abbreviated Journal Int. J. Mod. Phys. A  
  Volume 37 Issue Pages 2250131 - 14pp  
  Keywords Axion like particle; heavy neutrinos; dark matter  
  Abstract Axion like particles (ALPs) and right-handed neutrinos (RHNs) are two well-motivated dark matter (DM) candidates. However, these two particles have a completely different origin. Axion was proposed to solve the strong CP problem, whereas RHNs were introduced to explain light neutrino masses through seesaw mechanisms. We study the case of ALP portal RHN DM (Majorana DM) taking into account existing constraints on ALPs. We consider the leading effective operators mediating interactions between the ALP and Standard Model (SM) particles and three RHNs to generate light neutrino masses through type-I seesaw. Further, ALP-RHN neutrino coupling is introduced to generalize the model which is restricted by the relic density and indirect detection constraint.  
  Address [Gola, Shivam; Sinha, Nita] Inst Math Sci, CIT Campus, Chennai 600113, Tamil Nadu, India, Email: shivamg@imsc.res.in;  
  Corporate Author Thesis  
  Publisher World Scientific Publ Co Pte Ltd Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0217-751x ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000854297000001 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5359  
Permanent link to this record
 

 
Author (up) Mandal, S.; Miranda, O.G.; Sanchez Garcia, G.; Valle, J.W.F.; Xu, X.J. url  doi
openurl 
  Title Toward deconstructing the simplest seesaw mechanism Type Journal Article
  Year 2022 Publication Physical Review D Abbreviated Journal Phys. Rev. D  
  Volume 105 Issue 9 Pages 095020 - 32pp  
  Keywords  
  Abstract The triplet or type-II seesaw mechanism is the simplest way to endow neutrinos with mass in the Standard Model (SM). Here we review its associated theory and phenomenology, including restrictions from S, T, U parameters, neutrino experiments, charged lepton flavor violation as well as collider searches. We also examine restrictions coming from requiring consistency of electroweak symmetry breaking, i.e., perturbative unitarity and stability of the vacuum. Finally, we discuss novel effects associated to the scalar mediator of neutrino mass generation namely, (i) rare processes, e.g., l(alpha)-> l(beta)gamma decays, at the intensity frontier, and also (ii) four-lepton signatures in colliders at the high-energy frontier. These can be used to probe neutrino properties in an important way, providing a test of the absolute neutrino mass and mass ordering, as well as of the atmospheric octant. They may also provide the first evidence for charged lepton flavor violation in nature. In contrast, neutrino nonstandard interaction strengths are found to lie below current detectability.  
  Address [Mandal, Sanjoy] Korea Inst Adv Study, Seoul 02455, South Korea, Email: smandal@kias.re.kr;  
  Corporate Author Thesis  
  Publisher Amer Physical Soc Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2470-0010 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000807778600004 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5249  
Permanent link to this record
 

 
Author (up) Mandal, S.; Miranda, O.G.; Sanchez Garcia, G.; Valle, J.W.F.; Xu, X.J. url  doi
openurl 
  Title High-energy colliders as a probe of neutrino properties Type Journal Article
  Year 2022 Publication Physics Letters B Abbreviated Journal Phys. Lett. B  
  Volume 829 Issue Pages 137110 - 5pp  
  Keywords  
  Abstract The mediators of neutrino mass generation can provide a probe of neutrino properties at the next round of high-energy hadron (FCC-hh) and lepton colliders (FCC-ee/ILC/CEPC/CLIC). We show how the decays of the Higgs triplet scalars mediating the simplest seesaw mechanism can shed light on the neutrino mass scale and mass-ordering, as well as the atmospheric octant. Four-lepton signatures at the high-energy frontier may provide the discovery-site for charged lepton flavor non-conservation in nature, rather than low-energy intensity frontier experiments.  
  Address [Mandal, Sanjoy] Korea Inst Adv Study, Seoul 02455, South Korea, Email: smandal@kias.re.kr;  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0370-2693 ISBN Medium  
  Area Expedition Conference  
  Notes WOS:000831681800020 Approved no  
  Is ISI yes International Collaboration yes  
  Call Number IFIC @ pastor @ Serial 5301  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records:
ific federMinisterio de Ciencia e InnovaciĆ³nAgencia Estatal de Investigaciongva