Hati, C., Leite, J., Nath, N., & Valle, J. W. F. (2025). QCD axion, color-mediated neutrino masses, and B+ → K+ + Emiss anomaly. Phys. Rev. D, 111(1), 015038–16pp.
Abstract: Motivated by the recent Belle II result indicating a 2.76 excess of B+-* K+ + Emiss events compared to the Standard Model (SM) prediction for B+-* K+vv<overline>, we explore an explanation to this anomaly based on a Kim-Shifman-Vainshtein-Zakharov-type QCD axion model featuring a Peccei-Quinn (PQ) symmetry breaking at high scale, which can provide a solution to the strong CP problem with dark matter relic abundance. The model contains a PQ-charged scalar leptoquark which can interact with the SM quarks only via mass mixing of the latter with vectorlike quarks. The mixing between SM and vectorlike quarks is determined by the PQ mass scales and can explain the excess B+-* K+ + Emiss events while respecting other flavor constraints. The same PQ-charged scalar leptoquarks and vectorlike quarks also mediate the two-loop radiative neutrino masses.
|
Leite, J., Morales, A., Valle, J. W. F., & Vaquera-Araujo, C. A. (2020). Dark matter stability from Dirac neutrinos in scotogenic 3-3-1-1 theory. Phys. Rev. D, 102(1), 015022–11pp.
Abstract: We propose the simplest TeV-scale scotogenic extension of the original 3-3-1 theory, where dark matter stability is linked to the Dirac nature of neutrinos, which results from an unbroken B – L gauge symmetry. The new gauge bosons get masses through the interplay of spontaneous symmetry breaking a la Higgs and the Stueckelberg mechanism.
|
Leite, J., Morales, A., Valle, J. W. F., & Vaquera-Araujo, C. A. (2020). Scotogenic dark matter and Dirac neutrinos from unbroken gauged B – L symmetry. Phys. Lett. B, 807, 135537–5pp.
Abstract: We propose a simple extension of the standard model where neutrinos get naturally small “scotogenic” Dirac masses from an unbroken gauged B – L symmetry, ensuring dark matter stability. The associated gauge boson gets mass through the Stueckelberg mechanism. Two scenarios are identified, and the resulting phenomenology briefly sketched.
|
Leite, J., Popov, O., Srivastava, R., & Valle, J. W. F. (2020). A theory for scotogenic dark matter stabilised by residual gauge symmetry. Phys. Lett. B, 802, 135254–10pp.
Abstract: Dark matter stability can result from a residual matter-parity symmetry, following naturally from the spontaneous breaking of the gauge symmetry. Here we explore this idea in the context of the SU(3)(c) circle times SU(3)L circle times U(1)(x) circle times U(1)(N) electroweak extension of the standard model. The key feature of our new scotogenic dark matter theory is the use of a triplet scalar boson with anti-symmetric Yukawa couplings. This naturally implies that one of the light neutrinos is massless and, as a result, there is a lower bound for the O nu beta beta decay rate.
|
Leite, J., Sadhukhan, S., & Valle, W. F. (2024). Dynamical scoto-seesaw mechanism with gauged B – L symmetry. Phys. Rev. D, 109(3), 035023–17pp.
Abstract: We propose a dynamical scoto-seesaw mechanism using a gauged B – L symmetry. Dark matter is reconciled with neutrino mass generation, in such a way that the atmospheric scale arises a la seesaw, while the solar scale is scotogenic, arising radiatively from the exchange of “dark” states. This way we “explain” the solar-to-atmospheric scale ratio. The TeV-scale seesaw mediator and the two dark fermions carry different B – L charges. Dark matter stability follows from the residual matter parity that survives B – L breaking. Besides having collider tests, the model implies sizable charged lepton flavor violating (cLFV) phenomena, including Goldstone boson emission processes.
|