Beltran, R., Cottin, G., Hirsch, M., Titov, A., & Wang, Z. S. (2023). Reinterpretation of searches for long-lived particles from meson decays. J. High Energy Phys., 05(5), 031–31pp.
Abstract: Many models beyond the Standard Model predict light and feebly interacting particles that are often long-lived. These long-lived particles (LLPs) in many cases can be produced from meson decays. In this work, we propose a simple and quick reinterpretation method for models predicting LLPs produced from meson decays. With the method, we are not required to run Monte-Carlo simulation, implement detector geometries and efficiencies, or apply experimental cuts in an event analysis, as typically done in recasting and reinterpretation works. The main ingredients our method requires are only the theoretical input, allowing for computation of the production and decay rates of the LLPs. There are two conditions for the method to work: firstly, the LLPs in the models considered should be produced from a set of mesons with similar mass and lifetime (or the same meson) and second, the LLPs should, in general, have a lab-frame decay length much larger than the distance between the interaction point and the detector. As an example, we use this method to reinterpret exclusion bounds on heavy neutral leptons (HNLs) in the minimal “3+1” scenario, into those for HNLs in the general effective-field-theory framework as well as for axion-like particles. We are able to reproduce existing results, and obtain new bounds via reinterpretation of past experimental results, in particular, from CHARM and Belle.
|
Candia, P., Cottin, G., Mendez, A., & Muñoz, V. (2021). Searching for light long lived neutralinos at Super-Kamiokande. Phys. Rev. D, 104(5), 055024–11pp.
Abstract: Light neutralinos could be copiously produced from the decays of mesons generated in cosmic-ray air showers. These neutralinos can be long-lived particles in the context of R-parity violating (RPV) supersymmetric models, implying that they could be capable of reaching the surface of the earth and decay within the instrumental volume of large neutrino detectors. In this article, we use atmospheric neutrino data from the Super-Kamiokande experiment to derive novel constraints for the RPV couplings involved in the production of long-lived light neutralinos from the decays of charged D-mesons and kaons. Our results highlight the potential of neutrino detectors to search for long-lived particles, by demonstrating that it is possible to explore regions of parameter space that are not yet constrained by any fixed-target nor collider experiments.
|
Chiang, C. W., Cottin, G., & Eberhardt, O. (2019). Global fits in the Georgi-Machacek model. Phys. Rev. D, 99(1), 015001–21pp.
Abstract: Off the beaten track of scalar singlet and doublet extensions of the Standard Model, triplets combine an interesting LHC phenomenology with an explanation for neutrino masses. The Georgi-Machacek model falls into this category, but it has never been fully explored in a global fit. We use the HEPfit package to combine recent experimental Higgs data with theoretical constraints and obtain strong limits on the mixing angles and mass differences between the heavy new scalars as well as their decay widths. We also find that the current signal strength measurements allow for a Higgs to vector boson coupling with an opposite sign to the Standard Model, but this possibility can be ruled out by the lack of direct evidence for heavy Higgs states. For these hypothetical particles, we identify the dominant decay channels and extract bounds on their branching ratios from the global fit, which can be used to single out the decay patterns relevant for the experimental searches.
|
Cottin, G., Helo, J. C., & Hirsch, M. (2018). Searches for light sterile neutrinos with multitrack displaced vertices. Phys. Rev. D, 97(5), 055025–6pp.
Abstract: We study discovery prospects for long-lived sterile neutrinos at the LHC with multitrack displaced vertices, with masses below the electroweak scale. We reinterpret current displaced vertex searches making use of publicly available, parametrized selection efficiencies for modeling the detector response to displaced vertices. We focus on the production of right-handed WR bosons and neutrinos N in a left-right symmetric model, and find poor sensitivity. After proposing a different trigger strategy ( considering the prompt lepton accompanying the neutrino displaced vertex) and optimized cuts in the invariant mass and track multiplicity of the vertex, we find that the LHC with root s = 13 TeV and 300 fb(-1) is able to probe sterile neutrino masses between 10 GeV < m(N) < 20 GeV ( for a right-handed gauge boson mass of 2 TeV < m(WR) < 3.5 TeV). To probe higher masses up to m(N) similar to 30 GeV and m(WR) < 5 TeV, 3000 fb(-1) will be needed. This work joins other efforts in motivating dedicated experimental searches to target this low sterile neutrino mass region.
|
Cottin, G., Helo, J. C., & Hirsch, M. (2018). Displaced vertices as probes of sterile neutrino mixing at the LHC. Phys. Rev. D, 98(3), 035012–6pp.
Abstract: We investigate the reach at the LHC to probe light sterile neutrinos with displaced vertices. We focus on sterile neutrinos N with masses m(N) similar to (5-30) GeV that are produced in rare decays of the standard model gauge bosons and decay inside the inner trackers of the LHC detectors. With a strategy that triggers on the prompt lepton accompanying the N displaced vertex and considers charged tracks associated with it, we show that the 13 TeV LHC with 3000/fb is able to probe active-sterile neutrino mixings down to vertical bar V-lN vertical bar(2) approximate to 10(-9), with l = e, mu, which is an improvement of up to 4 orders of magnitude when comparing with current experimental limits from trileptons and proposed lepton-jets searches. In the case when tau mixing is present, mixing angles as low as vertical bar V-tau N vertical bar(2) approximate to 10(-8) can be accessed.
|